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Remote Sensing of Impervious Surfaces:
An Qverview

Qihao Weng

1 Introduction

Impervious surfaces are anthropogenic features through which water can-
not infiltrate into the soil, such as roads, driveways, sidewalks, parking
lots, rooftops, and so on. In recent years, impervious surface has emerged
not only as an indicator of the degree of urbanization, but also as a major
indicator of environmental quality (Arnold and Gibbons, 1996). Impervi-
ous surface is a unifying theme for all participants at all watershed scales,
including planners, engineers, landscape architects, scientists, social
scientists, local officials, and others (Schueler, 1994). The magnitude, loca-
tion, geometry, and spatial pattern of impervious surfaces, and the pervi-
ous-impervious ratio in a watershed have hydrological impacts. Although
land-use zoning emphasizes roof-related impervious surfaces, transport-
related impervious surfaces could have a greater impact. The increase in
impervious cover would lead to the increase in the volume, duration, and
intensity of urban runoff (Weng, 2001). Watersheds with large amounts of
impervious cover may experience an overall decrease in groundwater
recharge and baseflow and an increase in stormflow and flood frequency
(Brun and Band, 2000). Furthermore, imperviousness is related to the
water quality of a drainage basin and its receiving streams, lakes, and
ponds. Increase in impervious cover and runoff directly impacts the trans-
port of nonpoint source pollutants including pathogens, nutrients, toxic
contaminants, and sediment (Hurd and Civco, 2004). Increases in runoff
volume and discharge rates, in conjunction with nonpoint source pollution,
will inevitably alter in-stream and riparian habitats, and result in the loss
of some critical aquatic habits (Gillies et al., 2003). In addition, the areal
extent and spatial occurrence of impervious surfaces may significantly
influence urban climate by altering sensible and latent heat fluxes within
the urban canopy and boundary layers (Yang et al., 2003). Impervious
surface is found inversely related to vegetation cover in urban areas.

Xv
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In other words, as impervious cover increases within a watershed/
administrative unit, vegetation cover would decrease. The percentage
of land covered by impervious surfaces varies significantly with land-use
categories and subcategories (Soil Conservation Service, 1975). Therefore,
estimating and mapping (detecting, monitoring, and analyzing) imper-
vious surface is valuable not only for environmental management, for
example, water-quality assessment and stormwater taxation, but also
for urban planning, for example, building infrastructure and sustainable
urban growth.

In spite of its significance, the methods for estimating and mapping
impervious surfaces and applications of impervious surface data have
not been sufficiently explored. Many techniques have been applied to
characterize and quantify impervious surfaces using either ground
measurements or remotely sensed data. Field survey with global position-
ing system (GPS), although expensive and time-consuming, can provide
reliable information on impervious surfaces. Manual digitizing from hard-
copy maps or remote sensing imagery (especially aerial photographs)
has also been used for mapping imperviousness. This technique has
become more heavily involved with automation methods such as scan-
ning and the use of feature extraction algorithms in recent years. During
the 1970s and 1980s, remotely sensed data started to gain popularity in
natural resources and environmental studies and were used in interpret-
ive applications, spectral applications, and modeling applications of
impervious surfaces (Slonecker et al., 2001). In reviewing the methods
of impervious surface mapping, Brabec et al. (2002) identified four differ-
ent approaches: (1) using a planimeter to measure impervious surface on
aerial photography, (2) counting the number of intersections on the over-
lain grid on aerial photography, (3) conducting image classification, and
(4) estimating impervious surface coverage through the percentage of
urbanization in a region. These reviews concluded that in the 1970s and
1980s, aerial photography was the main source of remote sensing data for
estimating and mapping impervious surfaces (Slonecker et al., 2001;
Brabec et al., 2002).

With the advent of high-resolution imagery and more capable techniques
recently, remote sensing of impervious surfaces is rapidly gaining interest in
the remote sensing community and beyond. Driven by societal needs and
technological advances, many municipal government agencies have started
to collect and map impervious surface data for civic and environmental
uses. Given its importance but lack of books in the market that systematic-
ally examine the contents of the field, it is urgent to publish such a book.
Through review of basic concepts and methodologies, analysis of case
studies, and examination of methods for applying up-to-date techniques
to impervious surface estimation and mapping, this book may serve under-
graduate and graduate students as a textbook, or be used as a reference
book for professionals, researchers, and alike in academics, government,
industries, and beyond.
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2 Digital Remote Sensing Methods

Various digital remote sensing approaches have been developed to measure
impervious surfaces, including mainly: (1) image classification, (2) multiple
regression, (3) subpixel classification, (4) artificial neural network, and
(5) classification and regression tree (CART) algorithm. The image classifi-
cation approach utilizes image classifiers such as maximum likelihood
classifier, spectral clustering, or other supervised/unsupervised classifiers
to categorize and extract impervious surfaces as land-cover or land-use
type(s) (Fankhauser, 1999; Hodgson et al., 2003; Dougherty et al., 2004).
The multiple regression approach relates percent impervious surface to
remote sensing and geographic information system (GIS) variables (Bauer
et al., 2004; Chabaeva et al., 2004). The subpixel classification decomposes an
image pixel into fractional components, assuming that the spectrum meas-
ured by a remote sensor is a linear combination of the spectra of all com-
ponents within the pixel (Ji and Jensen, 1999; Wu and Murray, 2003; Lu and
Weng, 2004). The artificial neural network approach applies advanced
machine learning algorithms to derive impervious surface coverage.
Flanagan and Civco (2001) developed an artificial neural network (ANN)-
based impervious surface prediction model, which consisted of a two-tier
neural network series, with the final output to be per-pixel impervious
predictions and the training data from Landsat TM spectral reflectance
values. The CART approach produces a rule-based model for prediction
of continuous variables based on training data, and yields the spatial esti-
mates of subpixel percent imperviousness (Yang et al., 2003).

Image classification is one of the most widely used methods in the
extraction of impervious surfaces (Fankhauser, 1999; Slonecker et al., 2001;
Brabec et al., 2002; Yang et al., 2003), but results are often not satisfactory
because of the limitation of spatial resolution in remotely sensed imagery
and the heterogeneity of urban landscapes. Various impervious surfaces
may be mixed with other land-cover types, such as trees, grasses, and soils.
Moreover, the difficulty in selecting training areas could also lower the
accuracy of image classification. As fine spatial resolution data (mostly
better than 5 m in spatial resolution), such as IKONOS and QuickBird,
become available, they are increasingly employed for different applications
including impervious surface mapping. A major advantage of these images
is that such data greatly reduce the mixed pixel problem, providing a
greater potential to extract more detailed information on land covers. How-
ever, new problems associated with these image data need to be considered,
notably the shades caused by topography, tall buildings, or trees (Dare,
2005), and the high spectral variation within the same land-cover class.

Because of the inverse correlation between impervious surface
and vegetation cover in urban areas, one potential approach for impervi-
ous surface extraction is through information on vegetation distribu-
tion (Gillies et al., 2003; Bauer et al., 2004). The Normalized Difference
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Vegetation Index (NDVI) or greenness from tasseled cap transformation
or principal component analysis may be used to represent vegetation
distribution. Impervious surface can then be estimated based on regres-
sion models with vegetation indices. This approach, however, has a major
drawback. Different seasons of satellite images could result in large
variations in impervious surface estimation. In the leaf-on season, vege-
tation may be considerably overestimated, whereas in the leaf-off season,
vegetation tends to be underestimated, leading to the overestimation of
impervious surface coverage.

3 Use of Medium-Resolution Satellite Imagery

Most previous researches for extraction of impervious surfaces in urban
areas used the medium spatial resolution (10-100 m) images, such as Land-
sat TM/ETM+ and Terra’s ASTER images (Wu and Murray, 2003; Yang
et al.,, 2003; Lu and Weng, 2006a,b). However, their spatial resolutions are
regarded as too coarse, due to the heterogeneity of urban landscapes and the
complexity of impervious surface materials. Urban landscapes are typically
composed of features that are smaller than the spatial resolution of such
sensors and are a complex combination of buildings, roads, grass, trees, soil,
water, and so on. Strahler et al. (1986) described H- and L-resolution scene
models based on the relationships between the size of the scene elements
and the resolution cell of the sensor. The scene elements in the H-resolution
model are larger than the resolution cell and can therefore be directly
detected. In contrast, the elements in the L-resolution model are smaller
than the resolution cells and are not detectable. When the objects in the
scene become increasingly smaller relative to the resolution cell size, they
may be no longer regarded as objects individually. Hence, the reflectance
measured by the sensor can be treated as a sum of interactions among
various classes of scene elements as weighted by their relative proportions
(Strahler et al., 1986). The medium-resolution satellite images are attributed
to L-resolution model. As the spatial resolution interacts with the fabric of
urban landscapes, a special problem of mixed pixels is created, where several
land-use and land-cover types are contained in one pixel. Such a mixture
becomes especially prevalent in residential areas, where buildings,
trees, lawns, concrete, and asphalt can all occur within a pixel. The mixed
pixel has been recognized as a major problem affecting the effective use
of remotely sensed data in thematic information extraction (Fisher, 1997;
Cracknell, 1998).

Because of its effectiveness in handling the mixed pixel problem, spectral
mixture analysis (SMA), as a subpixel classifier, is gaining great interest in
the remote sensing community in recent years. As a physically based
image analysis procedure, it supports repeatable and accurate extraction
of quantitative subpixel information (Roberts et al., 1998). The SMA
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approach may be linear or nonlinear. However, for most remote sens-
ing applications, a linear SMA approach is employed. The linear approach
assumes that the spectrum measured by a sensor is a linear combination of
the spectra of all components within the pixel (Adams et al., 1995). Different
methods of impervious surface extraction based on the linear SMA model
have been developed. For example, impervious surface may be extracted as
one of the endmembers in the standard SMA model (Phinn et al., 2002).
Impervious surface estimation can also be done by the addition of high-
albedo and low-albedo fraction images, with both as the SMA endmembers
(Wu and Murray, 2003). Moreover, a multiple endmember SMA (MESMA)
method has been developed (Rashed et al, 2003), in which several
impervious surface endmembers can be extracted and combined. However,
these SMA-based methods have a common problem, that is, impervious
surface tends to be overestimated in the areas with small amounts of
impervious surface, but is underestimated in the areas with large amounts
of impervious surface. The similarity in spectral properties among non-
photosynthetic vegetation, soil, and different kinds of impervious surface
materials makes it difficult to distinguish impervious from nonimpervious
materials. In addition, shadows caused by tall buildings and large
tree crowns in the urban areas may also lead to an underestimation of
impervious surface area.

In particular, the addition of low-albedo and high-albedo fraction images
has been proven effective in estimating and mapping impervious surface
to a certain degree. However, the impervious surface may be overestimated
in the areas where a low amount of imperviousness is detected. This
is because the low-albedo fraction image may relate to different kinds
of materials/covers, including water, canopy shadows, building shadows,
moisture in grass or crops, and dark impervious surface materials. On
the other hand, although the high-albedo image is largely associated
with impervious surfaces, it may be confused with dry soils. Additional
data or improved techniques are therefore necessary to separate impervi-
ous surfaces from others. Slonecker et al. (2001) noted that the use of
thermal infrared and radar imagery may aid greatly in impervious sur-
face estimation, possibly through data fusion. Lu and Weng (2006a) have
successfully utilized Landsat ETM+ thermal infrared data to enhance
their estimation of impervious surfaces based on the differences in land
surface temperature between impervious and nonimpervious surfaces.
The land surface temperature image was used as a threshold to remove
dry soils from the high-albedo fraction image and to remove water and
shadows from the low-albedo fraction image. In addition, radar data have
inherent advantages in the identification and estimation of impervious
surfaces because of the high dielectric properties of most construction
materials and the unique geometry of man-made features (Slonecker
et al., 2001).



XX

4 The Structure of the Book

This book consists of five parts. Part I introduces various methods of remote
sensing digital image processing for impervious surface estimation and
mapping. Part II exemplifies most recent technological advances in the
field of remote sensing of impervious surfaces. Part III presents techniques
for extracting and mapping transport-related impervious surfaces using
different types of remotely sensed data. The techniques and case studies
for estimating and mapping roof-related impervious surfaces are contained
in Part IV. The final part, Part V, examines some major application areas
of impervious surface data, including impact analysis of water quality,
hydrological modeling of water flow, examination of the effect on aquatic
fauna, and population estimation.

The chapters in Part I are concerned with four different approaches to
impervious surface estimation and mapping. These methods, including
regression, CART, SMA, and artificial neural network, have received wide
recognition in the remote sensing community. Chapter 1 describes the
method and some results of estimation and mapping of impervious surface
area for the state of Minnesota in 1990 and 2000. The method uses a regres-
sion modeling to estimate the percent of imperviousness for each pixel based
on its inverse relation with the greenness component of the tasseled cap
transformation of Landsat TM/ETM+ data. Although this project employed
satellite images in spring, summer, and fall seasons, only summer images
were used for the modeling to have the greatest contrast between impervi-
ousness and vegetation responses. In Chapter 2, a method based on ANN is
established to estimate the subpixel imperviousness from IKONOS imagery.
The case study conducted in Grafton, Wisconsin, which had diverse land-use
types, shows that the ANN model produced reasonable high accuracy with a
mean error of 7.78. The model performed even better in the urban areas,
where the satellite data were highly nonlinear. Chapter 3 applies the CART
algorithm developed by the United States Geological Survey (Yang et al.,
2003; Xian, 2006) to two fast-growing regions, Seattle-Tacoma, Washington
and Las Vegas, Nevada. This method first classified high-resolution
imagery. Pixels classified as urban were totaled to calculate impervious
surface as a percentage and rescaled to match the pixel size of the medium-
resolution satellite imagery. The percent imperviousness datasets were then
used as dependent variables in the regression tree models, while the med-
ium-resolution image data and derived variables (such as NDVI) together
with other geospatial data (such as slope) were used as the independent
variables. This chapter further examines how urban growth, as indicated by
impervious surface data, related to housing density in Seattle-Tacoma be-
tween 1986 and 2002 and in Las Vegas between 1984 and 2002. Chapter 4
applies SMA to Landsat ETM+ imagery to derive fraction images, which are
further used to compute impervious surfaces. This approach has demon-
strated its effectiveness with reasonably high accuracy (Wu and Murray,
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2003; Lu and Weng, 2006a). A major drawback with this approach lies in its
difficulty in extracting dark impervious surface areas, which are confused
with water and shadows. Therefore, the authors of this chapter further
employed IKONOS data to extract impervious surface data by using a
hybrid method of decision tree classifier and unsupervised ISODATA clas-
sifier for the purpose of validation.

Part II presents new developments in remote sensing of impervious
surfaces, especially in the areas of ANN-based model, object-oriented
detection, fractal analysis, image fusion, and use of hyperspectral imagery.
In Chapter 5, two new models are introduced for extraction of impervious
surfaces using remote sensing data of multiple sources. The ANN-based
subpixel proportional land-cover information transformation (SPLIT) model
establishes spectral relationship between Landsat TM pixel values and the
corresponding high spatial resolution, airborne, digital multispectral video-
graphy data, so that proportions of impervious surface within the Landsat
TM imagery can be extracted. The object-oriented multiple agent segmen-
tation (MASC) model extracts impervious surfaces from true-color digital
orthophotos by imbedded segmentation, shadow-effect, MANOV A-based
classification, and postclassification submodels. Chapter 6 examines the
benefits of hyperspectral imagery for extracting impervious surfaces with
a case study in Indianapolis, United States. SMA was applied to EO-1
Hyperion imagery to calculate the fraction images of green vegetation,
soil, high albedo, and low albedo. The fraction images of high albedo and
low albedo are then used to estimate impervious surfaces. In comparison
with ALI (multispectral) imagery, the Hyperion image was found to be
more effective in discerning low-albedo surface materials, which have
been a major obstacle for impervious surface estimation with medium-
resolution multispectral images (refer to Chapter 4). Chapter 7 applies
fractal analysis (triangular prism method) for separating types of impervi-
ous land cover with a primary focus on the separation of roofs, roads, and
driveways in a suburban area of New York. It demonstrates that there were
statistical differences between fractal dimensions calculated for different
classes of impervious land cover. Roofs and roads were found generally
separable on a pairwise basis, while driveways were more frequently con-
fused. Recognizing the strengths and limitations of synthetic aperture radar
(SAR) and optical remote sensing data, Chapter 8 demonstrates how the
techniques of data fusion can be applied for better feature extraction in
urban areas. The methodology was based on texture analysis of both SAR
and optical images for detection and exploitation of spatial patterns, fol-
lowed by a joint classification of the extracted spatial features together with
the original spectral features. The Markov random field classifier used for
this research was found to provide better accuracy than the neuro-fuzzy
classifier and to have a similar capability to cope with multiple inputs.

The next two parts of the book focus each on one functional type of
impervious surface, transport-related impervious surfaces in Part III and
roof-related impervious surfaces in Part IV. Specifically, Part III explores the
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spectral characteristics of roads under different conditions and introduces
unique techniques for extracting roads by using various remotely sensed
data. Chapter 9 applies hyperspectral imagery (airborne visible/infrared
imaging spectrometer—AVIRIS) for road extraction and assesses the effect-
iveness of four advanced image classifiers. Minimum noise fraction (refer
to Chapters 4 and 6) and CART (refer to Chapter 3) were used to reduce
the number of spectral dimensions to be analyzed. The four classifiers
examined are the spectral angle mapper (SAM), object-oriented nearest
neighbor, mixture-tuned matched filtering (MTMF), and the combination
method of mixture-tuned matched filtering and CART (MTMF-CART). This
study found that the object-oriented nearest neighbor classification method
produced the best overall result compared with MTMF, SAM, and
MTMF-CART classifiers. The overall accuracies for the four classifications
were 93.2%, 81.89%, 88.92%, and 84.32%, respectively. Chapter 10 first
describes the strengths and limitations (arising from the side-looking
illumination of the sensor) of SAR imagery for road extraction. Then, it
applies the “TUM-LOREX" method of road extraction (Steger et al., 1997;
Wiedemann and Hinz, 1999; Wiedemann and Ebner, 2000) to SAR imagery.
In order to compensate for possible gaps caused by adjacent high buildings
and narrow streets, dominant scattering caused by building structures,
traffic signs, and metallic objects in cities, the authors suggest that add-
itional information is needed for better extraction through data integration.
SAR imagery may be combined for use with context information, road
class-specific modeling, and use of multiview imagery. As high spatial
resolution satellite imagery (better than 5 m in the panchromatic channel),
such as SPOT 5, IKONOS, QuickBird, OrbView, or EROS, becomes available
for civilian applications, there is a shift in road extraction algorithms
from linear to surface models. Chapter 11 proposes a new method of
road extraction from high-resolution imagery, which integrates a linear
representation of the road (graph module) with a surface representation
(reconstruction module). In order to overcome local artifacts, the method
makes use of advanced image-processing algorithms such as active con-
tours and the wavelet transform. Its application and evaluation on a
QuickBird image over an urban area in France achieved an acceptable accur-
acy. The last chapter in Part III, Chapter 12, discusses common spectral
characteristics of asphalt roads and the impact of different road conditions
and distresses, based on the Santa Barbara asphalt road spectra library
(Herold and Roberts, 2005). It further evaluates the potential of hyperspectral
remote sensing to study transportation infrastructure and road surfaces (also
refer to Chapter 9).

Part IV is concerned with various methods and techniques for estimation
and mapping of roof-related impervious surfaces. Chapter 13 presents a
method for generation of an urban 3D model, especially a digital building
model via integrating image knowledge and LiDAR data. The main contri-
bution lies in the development of an object-oriented building extraction
model, which defines roof types, roof boundary coordinates, planar
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equation, and other parameters. These parameters were extracted from the
combined processing of LIDAR and orthoimage data. In Chapter 14, state-
of-the-art building extraction and city modeling techniques are presented.
Aerial images, with semiautomated photogrammetric techniques, are
currently regarded to be most important for city modeling. This chapter
evaluates the potential of aerial laser scan data for modeling cities. Chapter
15 discusses main characteristics of the electromagnetic models with respect
to SAR data. The rationale and results for a sound electromagnetic SAR
modeling of the dihedral canonical elements are provided. The models
discussed are appropriate for airborne and the upcoming generation of
high-resolution spaceborne SAR sensors. To achieve accurate roof-mapping
results, it is often necessary to fuse the spectral information of the multi-
spectral image and the spatial information of the panchromatic image of
a given sensor or sensors into one image. This method is called pan-
sharpening the multispectral image using the pan image. In Chapter 16,
two examples of pan-sharpening for roof mapping are illustrated: pixel-
based postclassification for small-scale roof mapping using Landsat TM and
SPOT Pan fused images and object-oriented classification for medium-scale
roof mapping using pan-sharpened QuickBird images. Both case studies
demonstrate that an effective image fusion can significantly contribute to an
improvement in the accuracy of roof mapping, although the final results
may still contain errors.

Part V presents some examples of applications of remotely sensed
impervious surface data. Impervious surface coverage affects both water
quality and water abundance through its influence on surface runoff.
Chapter 17 discusses this relationship in detail and illustrates it through
a case study in Pennsylvania. The project aimed at the development of a
software that would estimate the potential impact of urbanization on
water quality within the watersheds in the state. By creating an ISA
map for the year 2002 and by comparing with the existing 1985 and
1995 maps, development trends though a longer time period may also
be determined. Chapter 18 is closely related to Chapter 17, but focuses on
the storm runoff effect of impervious surface dynamics. It provides an
overview of the Simple Method and Soil Conservation Service-based
hydrologic models, which were widely used to predict the effects of
urbanization on precipitation-runoff processes. In addition, this chapter
introduces a remote sensing-based technique for determining the extents
of impervious surface in the watershed using its inverse relationship with
fraction vegetation cover (Carlson and Ripley, 1997). Case studies were
conducted to demonstrate runoff responses to the increased impervious
areas under different climate conditions, one in the Red River of the
North Basin along the state border between North Dakota and Minnesota
and the other in Simms Creek watershed in Florida. Chapter 19 reviews
literatures regarding the effect of growth of impervious surface coverage
on the biodiversity of terrestrial and aquatic fauna. The case study
illustrated in this chapter resulted from the author’s articles published
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in 2003 (Gillies et al., 2003). By computing a time line of impervious
surface area and combining with historical freshwater mussel data, it
examines the effect of impervious surface area on aquatic fauna in the
Flint River tributaries over a period of extensive urban growth (1979-
1997) associated with the Peachtree City of Atlanta metropolitan area. The
last chapter of this book, Chapter 20, presents a method of population
estimation by using impervious surface data derived from a Landsat
ETM+ image. The research conducted population modeling in Marion
County, Indiana, United States, at all census levels (census block, block
group, and census tract). The performance of models was evaluated by
several criteria (i.e., relative error, mean relative error, median relative
error, and the error of total in percentage). Better models were found to
have higher analytical scales, and the performance reached the best at the
census tract level.
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1.1 Introduction

Impervious surfaces are defined as any surface that water cannot infiltrate.
These surfaces are primarily associated with transportation (streets, high-
ways, parking lots, sidewalks) and buildings. Expansion of impervious
surfaces increases water runoff and is a primary determinant of stormwater
runoff volumes, water quality of lakes and streams, and stream habitat
quality in urbanized areas. Increases in impervious surfaces, and accom-
panying phosphorous, sediment, and thermal loads, can have profound
negative impacts on lakes and streams and habitat for fisheries. Percent
impervious surface area has emerged as a key factor to explain and gener-
ally predict the degree of impact severity on streams and watersheds. It has
been generally found that most stream health indicators decline when the
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impervious area of a watershed exceeds 10% (Schueler, 1994). Arnold and
Gibbons (1996) suggest that impervious surface area provides a measure of
land use that is closely correlated with these impacts and more generally
that the amount of impervious surface in a landscape is an important
indicator of environmental and habitat quality in urban areas. In the area
of urban climate, Yuan and Bauer (2006) have recently documented a strong
relationship between the amount of impervious surface area and land
surface temperatures or the urban heat island effect. It follows that imper-
vious surface information is fundamental for watershed planning and
management and for urban planning and policy.

Continued urban growth, expected to occur over the next three decades,
should be accompanied by carefully designed and maintained stormwater
runoff controls as required by new federal and state stormwater permits
and total maximum daily load (TMDL) allocations for municipal storm-
water sources. In Minnesota, there are more than 200 Municipal Separate
Storm Sewer System (MS4) communities that are required by the Storm-
water Program to begin stormwater pollution prevention planning and
implementing urban best management practices. The M54 cities must iden-
tify best management practices and measurable goals associated with each
minimum control measure. Quantifying impervious cover should be one of
the first steps for these areas. Given the number and size of the areas of
interest, an economical and consistent method for mapping impervious
surface area is needed.

Since the formulation by Ridd (1995) of a conceptual model of urban
landscapes as a spectral mixture of vegetation, impervious surfaces, and
soil, a growing number of researchers have used Landsat data to map
impervious surface area. A variety of approaches, including spectral mix-
ture analysis (Wu and Murray, 2003; Wu, 2004; Lu and Weng, 2006), regres-
sion tree modeling (Yang et al., 2003a,b; Xian and Crane, 2005), decision tree
classification (Dougherty et al., 2004; Jantz et al., 2005), subpixel classifica-
tion (Civco et al., 2002), neural network classification (Civco and Hurd,
1997), and multiple regression (Bauer et al., 2004, 2005) have shown that
Landsat remote sensing has the potential for mapping and monitoring
impervious surface area. Landsat Thematic Mapper (TM) and Enhanced
Thematic Mapper Plus (ETM+) data have several advantages for this ap-
plication: synoptic view of multicounty areas, digital, GIS compatible data,
availability of data since 1984, and economical costs.

In an urban area where most pixels of Landsat data are mixed pixels
with mixtures of vegetation (particularly grass and trees), water, and
impervious surfaces, we believe the best approach is to consider impervious
as a continuous variable. By treating impervious as a continuous variable,
the errors associated with assigning a mixed pixel to a single nominal class
with a range of impervious amounts or in assigning an average impervious
value to each land cover/use class are avoided. Our approach has been to
use a regression model to estimate the percentage of impervious for each
pixel. The theoretical basis for the approach is illustrated in Figure 1.1.
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FIGURE 1.1

Conceptual model for estimating percent impervious surface area at the pixel level.

The greenness component of the tasseled cap transformation of Landsat
TM/ETM+ data is sensitive to the amount of green vegetation and inversely
related to the amount of impervious surface area. The resulting classifica-
tion provides a continuous range of impervious area from 0% to 100%.

This chapter describes the methods and results for estimation and map-
ping of impervious surface area, using multiple regression modeling, for the
state of Minnesota for two time periods, 1990 and 2000. Minnesota has a
wide variety of rural and urban landscapes, making it a near-ideal setting to
implement and evaluate the use of Landsat remote sensing for land cover
and impervious surface mapping. The rural areas include agricultural crop-
land, forests, and wetlands cover types, interspersed with towns. The urban
areas range from low to high intensity development and from small towns
in rural areas to regional center cities to the Twin Cities metropolitan area.
Although the primary impetus for our work has been to quantify and map
impervious surface area in support of watershed management and plan-
ning, imperviousness is also important in relation to aesthetics, habitat, and
urban climate.

1.2 Methods

Landsat TM/ETM+ digital imagery were acquired and analyzed for two
time periods, 1990 and 2000. The key steps in the procedures were image
acquisition; rectification, land cover classification, development, and appli-
cation of a regression model relating percent impervious to Landsat TM
tasseled cap greenness, and accuracy assessment (Figure 1.2). Image pro-
cessing was performed in ERDAS Imagine, GIS operations in ArcGIS, and
statistical analyses in SAS.
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FIGURE 1.2

Flowchart of image processing and classification procedures for mapping impervious surface
area. (From Bauer, M., Loeffelholz, B., and Wilson, B., Proceedings, Pecora 16 Conference, American
Society of Photogrammetry and Remote Sensing, October 23-27, 2005, Sioux Falls, South Dakota,
2005. With permission.)

1.2.1 Landsat Image Acquisition, Rectification, and Land Cover
Classification

Nineteen images of Landsat are required to cover the state of Minnesota.
Selection of clear, cloud- and haze-free imagery was a high priority and the
selected images had only a few areas with clouds. In those areas, the clouds
and cloud shadows were manually digitized to create a cloud mask, which
was overlaid on the impervious classification and all pixels within it were
assigned a value of zero. It should be noted, however, that there were very
few areas where clouds and urban overlapped.

The 19 images were rectified to the Universal Transverse Mercator
(UTM) coordinate and projection system using ~35 ground control points
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per image and nearest neighbor resampling to a 30 m pixel size with an
root-mean-square (RMS) error of % pixel (7.5 m) or less. The coordinates
of the final images were adjusted to values evenly divisible by 30. Follow-
ing rectification, the imagery was transformed to unsigned 8-bit
Landsat TM/ETM+ tasseled cap values (Crist and Cicone, 1984; Huang
et al., 2002).

Our approach for mapping impervious surfaces applies an impervious
estimation model to developed and urban areas, thereby requiring a con-
current land cover map to separate rural areas from developed/urban
areas. We used a multitemporal, multispectral image classification with a
combination of spring, summer, and fall Landsat TM images acquired in
~2000 to classify land cover. The images were stratified into spectrally
consistent classification units (SCCU) based on the Landsat image acquisi-
tion dates and paths, ecoregions, and vegetation phenology (Figure 1.3).
The tasseled cap features of greenness, brightness, and wetness for the
three-date multitemporal images were used with a k-nearest (kNN) classi-
fier to generate a land cover classification of the state with seven classes:
agriculture, grassland, forest, wetland, water, extraction, and urban. The
kNN classifier assigns each unknown pixel of the satellite image the attri-
butes of the most similar reference pixels for which field data exist.
The similarity is defined by the Mahalanobis distances between classes.
The kNN method has proven to be an accurate and cost-efficient method
for extending field inventory data to landscape scales (McRoberts et al.,
2002). The average statewide overall accuracy for the level 1 cover type
classifications was 84.5% with a kappa statistic of 0.81. The average produ-
cer and user accuracies for the urban class were 91.7% and 95.4%,
respectively.

1990

FIGURE 1.3

Strata, based on Landsat image acquisition dates, ecoregions, and vegetation phenology, used
for land cover and impervious classifications. The Landsat image paths and rows and acquisi-
tion dates are listed in Table 1.1.
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1.2.2 Development of Impervious Surface Regression Models

Model calibration sites were selected separately for each Landsat image
with ~50 sites for each Landsat image. The selection of sites was stratified
by the range of amounts and types of impervious cover (e.g., parks, resi-
dential housing with varying densities, commercial, and industrial land
uses) as well as by variations in amounts and kinds of vegetative cover
(e.g., grass, forest, shrub). Stratification by vegetation cover type was done to
account for seasonal variability in greenness between vegetative cover types.

The calibration sites were typically 40-100 Landsat pixels or ~2.5-10 ha
in size. Further, the boundaries of the calibration sites were “‘snapped’ to
the 30-m Landsat grid to ensure that the calibration sites in the high-
resolution images matched the Landsat images. The impervious surface
area of each site digitized from 1991 to 1992 1 m panchromatic digital
orthophoto quadrangles (DOQs) for 1990 and from 2003 1 m color DOQs
for 2000 to determine the percent impervious surface area within each site.
Sites where the land cover or impervious area might have changed between
acquisition of the aerial and Landsat imagery were not included.

The measurements of impervious surface area from the calibration sites
were used to develop a least squares regression model relating percent
impervious to the Landsat tasseled cap greenness responses for each
SCCU image. Greenness is sensitive to the amount of green vegetation and
therefore is inversely related to the amount of impervious surface area.
The summer images provide the greatest contrast between impervious and
vegetation responses. The images used for the impervious classifications are
listed in Table 1.1.

TABLE 1.1

Landsat Image Acquisition Dates and Paths and Rows

~1990 ~2000
Strata Date Path/Row Date Path/Row
1 30 August 1990 29/28-29 07 August 2001 26/27
2 30 August 1990 29/27 12 September 2000 27/26-28
3 30 August 1990 29/26 26 August 2000 28/26
4 04 September 1991 27/30 28 August 2001 29/26-28
5 04 September 1991 27/29 24 August 2000 30/27
6 26 August 1991 28/29 24 August 2000 30/26
7 07 August 1990 28/30 10 August 2000 28/30
8 07 August 1990 28/27 10 August 2000 28/29
9 10 August 1991 28/26 28 August 2001 29/29
10 04 September 1991 27/26-28 10 August 2000 28/28
11 07 August 1990 28/28 26 August 2000 28/27
12 09 August 1990 26/27 12 September 2000 27/29-30
13 25 August 1990 26/29-30 11 September 1999 26/30
14 23 July 1991 30/26-27 11 September 1999 26/29

Note: Strata refer to the maps in Figure 1.3.
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1.2.3 Impervious Surface Classification

Classification of impervious surface was performed using an ERDAS Ima-
gine Spatial Model with the Landsat tasseled cap greenness values for the
calibration sites used as the input values for the impervious estimation
models. Values generated represented the percent of impervious surface
within the area of each pixel.

To remove estimation bias, an inverse calibration was computed from the
linear fit of measured vs. Landsat-estimated plots and applied to the imper-
vious surface classification (Walsh and Burk, 1993). Following the inverse
calibration, the accuracy of the Landsat-derived impervious surface esti-
mates was reassessed. The inverse calibration process did not significantly
affect the R* or standard error values, but decreased the intercept and
increased the slope of the regression equations, reducing the overall bias
of the models and improving the final classification accuracy.

The land cover classification was used to mask and reclassify the non-
urban areas to 0% impervious surface values. The 2000 land cover classi-
fication map was used as the primary identifier of urban to have
consistent comparisons of the urban areas between the two years. We
assumed that areas identified as urban in 2000, but not developed in
1990, would have a high greenness value (due to vegetative cover) in the
1990 imagery and would be modeled as having low to no impervious
surface in the 1990 images. However, areas of bare soil in agricultural
fields in 1990 that changed to urban by 2000 would have low greenness
values on each date, causing errors in the modeling of impervious surface
for 1990. A land cover map for the early 1990s, the Minnesota GAP land
cover classification (Lillesand et al., 1998; Minnesota Department of Nat-
ural Resources (DNR), 2002), was used to remove the cropland and grass-
land areas from the areas considered as urban for 1990 to minimize this
€erTor.

Mines (gravel and sand quarries and iron ore open pit mines), consid-
ered as developed or urban in the 2000 land cover classifications, were
identified for further processing in the impervious surface classification.
Bare soil is classified in the impervious models as having a high degree of
impervious surface due to its low greenness value. Much of the area of
mines is bare soil, gravel, and related materials, making separation of the
impervious surface from bare soil difficult. Data identifying the location
and extent of all mines in the state do not exist; however, there were data
produced by the Minnesota DNR-Division of Lands and Minerals that
identified the locations of active mining areas in the Mesabi Iron Range
where the majority of open pit mines are located. This dataset was used to
force the pixel values that fell within the iron mines data to an impervious
value of zero.

The last processing procedure established a minimum and maximum for
the modeled impervious values. Although the regression modeled estimate
of percent impervious for a pixel might be less than 0% or more than 100%,
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this is not physically possible. Therefore, pixels with estimated impervious
surface values greater than 100% were reclassified to 100% impervious and
those with less than 0% were reclassified as 0% impervious.

1.2.4 Accuracy Assessment

An independent random sample of ~25 accuracy assessment sites was
selected from each of the Landsat images. The impervious surface values
for these sites were determined in the same manner as the calibration sites
described earlier. These sites were used for performing inverse calibration
to remove estimation bias and to measure the accuracy of the final Landsat-
derived impervious surface estimates. Accuracy was evaluated by regres-
sion analyses of measured vs. predicted amounts of impervious area.

1.3 Results and Discussion

We have found a strong relationship between Landsat tasseled cap green-
ness and percent impervious surface area. An example of the relationship of
greenness to percent impervious surface is shown in Figure 1.4. The second-
order regression model has an R* of 0.91 and standard error of 10.7. By
considering greenness and percent impervious area as continuous variables,
we can use a regression model to estimate the percent impervious area of
each Landsat pixel. The resulting classification provides a continuous range
of impervious surface area from 0% to 100%.

Figure 1.5 evaluates the agreement between the measured and Landsat-
estimated percent impervious area for the same image as in Figure 1.4
following the inverse calibration. Similar results were obtained for the
other 1990 and 2000 images. Figure 1.6 compares part of a DOQ image
and the Landsat classification of percent impervious at the pixel level for
an urban area. Although the Landsat classification is at a coarse resolution
compared with the DOQ), the correspondence of features, particularly the
pattern of streets and other urban features such as parks, residential areas,
and commercial and industrial areas, is readily apparent in the two images.

The statistics for all of the images for both the 1990 and 2000 classifica-
tions were consistent with R* values ranging from 0.80 to 0.94 and standard
errors of 7.7-15.9 (Table 1.2). Figure 1.7 combines the data from all classifi-
cations for 1990 and 2000 to assess the overall accuracy of the Landsat
estimates. The overall agreement between measured and Landsat estimates
of percent impervious was high for both time periods with R* values of 0.86
and standard errors of 11.8 and 11.7.

The statistics, as well as the image comparisons, of Landsat estimates and
DOQ measurements of impervious area indicate strong agreement; how-
ever, there are several known sources of error. These include: (1) land cover
classification errors in urban/developed vs. rural/nonurban areas. Our
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l N

0 % Impervious 100

FIGURE 1.6
Comparison of a high-resolution DOQ of a local area in Eagan (left) to the Landsat-derived
classification of intensity of impervious surface area.

approach estimates impervious for only the urban class so errors in classi-
fication of urban vs. nonurban lead to errors in the location and amount of
impervious area. (2) Bare soil is spectrally similar to impervious surfaces.
Although we used summer Landsat images when there is relatively little
bare soil, some are still present and likely misclassified as impervious.

TABLE 1.2

Accuracy of Impervious Surface Classifications by Strata

and Year

1990 2000

Strata R? Std. Error R? Std. Error
1 0.86 11.2 0.94 7.7
2 0.89 11.2 0.87 8.9
3 0.90 10.3 0.87 11.7
4 0.83 12.8 0.82 13.4
5 0.82 12.9 0.94 7.8
6 0.89 10.2 0.92 8.9
7 0.94 7.8 0.90 10.1
8 0.85 129 0.85 12.8
9 0.87 12.8 0.89 9.6

10 0.86 9.4 091 9.4

11 0.84 12.0 0.89 10.8

12 0.81 15.2 0.81 13.1

13 0.82 14.7 0.80 13.9

14 0.90 9.7 0.80 15.9

Note: The locations of strata are shown in Figure 1.2.
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(3) Tree cover that obscures impervious areas. Although tree-covered areas
are included in the calibration models, they are still a likely source of error.
However, the error was <6% in a preliminary evaluation of this effect in an
urban area with varying amounts of tree cover. (4) Differences in image
acquisition dates and vegetation condition and phenology within images.
We used mostly August images, but several are early September, which
likely had somewhat less greenness for grass that was not irrigated than
irrigated lawns. Similarly, early senescing trees would have less greenness.
Both these conditions may cause an overestimate of imperviousness.

Examples of the impervious classifications and change maps for two
areas, St. Cloud and Rochester, in east central and southeast Minnesota,
which are experiencing significant growth, are shown in Figure 1.8. The
growth of the urban area and accompanying increases in the amount of
impervious surface area are readily apparent with a 40% increase for St.
Cloud and 28% for Rochester. The large area covered by the classifications
makes it impossible to show here their relevant spatial detail, especially at
county to state scales. However, maps of the entire state with capability to
roam and zoom can be viewed at: http: /land.umn.edu/, along with statis-
tics on amounts and changes in impervious area. The maps and statistics
can be viewed, printed, and downloaded for county, city/township, ecor-
egion, watershed, and lakeshed units.

Table 1.3 lists the amount of impervious surface area for several represen-
tative cities, ecoregions, watersheds, and the state. Between 1990 and 2000 the
amount of impervious area for the entire state increased 118,464 ha from
1.31% to 1.88% of the total land area, a 44% increase. However, it is
the increases at the local, city, and watershed scales that are most critical to
the water quality and other environmental effects. At the major watershed
level, 20 of 81 watersheds had increases in total impervious area of more than
100% between 1990 and 2000, with 23 experiencing increases of 50%-99% and
22 with 10%—49%. Only 16 had increases of <10% or a small decrease. At the
city scale, many cities, especially in the suburbs surrounding Minneapolis—
St. Paul, as well as in regional center cities, had increases of 50% or more.

However, increases are not restricted to the larger urban centers. The area
and degree of imperviousness also increased in and around many of the
smaller towns. Of particular concern is the lake-rich areas of northern
Minnesota, where, for example, in the Northern Lakes and Forest Ecoregion,
the impervious area increased more than 13,000 ha, a 32.5% increase.
Impervious cover increased ~56% in 25 lake watersheds in north central
Minnesota with ~1%—4% of the watersheds remaining impervious. In
the Crow River Watershed (the Crow River is an impaired water body for
one to three parameters) west of the Twin Cities, 23 cities and towns
and 7 associated townships had impervious area increases of 48% for the
municipal areas and 129% for the townships. In 71 non-Twin Cities metro
area cities and associated townships, the amount of imperviousness
increased 69%. These examples illustrate that relatively large percentage
increases in impervious cover have been occurring over the past decade and
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FIGURE 1.8 (See color insert following page 292.)

Impervious classifications of St. Cloud and Rochester for 1990 and 2000 and change maps.
(From Bauer, M., Loeffelholz, B., and Wilson, B., Proceedings, Pecora 16 Conference, American
Society of Photogrammetry and Remote Sensing, October 23-27, 2005, Sioux Falls, South Dakota,

2005. With permission.)



ing of Impervious Surfaces

ing o

Remote Sens

16

arvy 881 €1 160°611 00£88¢€ 67969 826781 ojels
G089 0¥l 780 1£9'C 9659 GT6'e GE6'€0S POYSISIEM IOARY SUIM MOID
65°LL ¥9°¢ 6¥'1 16y 128°6 0€5°S £98'08¢ Ppaysioiep oAy uoues
9,406 €0¥ [4%4 €eEY £L0T'6 VLLY L66'8€C Ppaysiolep 191 M[[RS—IPATY XIOID 15
6L €11 8¢9 ¥9°¢C 7¢'8 1£9'S1 0€€’L LLY'06T poysIiep pnopD 15—Ioany ddississyn
0T°2L 91'¢ 'l 00£'8¢ G68°88 S61°0S 096'¢ST'Y UOI3100H [ UI0D) UIDISI
9vY 68°¢ 04C 620°6Y 808851 64601 896'TEEY U0r32100F SPOOMPIRH [eXUD) "N
197ce 880 290 0c¥eL 8€LYS 80€°1¥ 8/£°€C89 UOI810DH 3S910] pUe Sae] UWIOUIION
€7°0¢ 98¢ €8'1¢ £TC €L6 9L 9er'e euuoyeMQ
[4eNGi% 69°CE 18'T¢ 097 68€°1 6C6 06TV OFejUeN
6¥'0— €Ll €Ll 1= 2e0e Lv0'e 009°cC ymmg
a8'cs 90'9¢ £9°€C 91 €8¥ 91¢ 607'T spidey >neg
9IT'19 qq'1l PraA q8¥ 8LT'1 €6/ EveTL TRAR] [H
999 6€L1 PITL 9¢c §29 66€ 8/8°¢ s[[ed snd1ag
1901 ¥coc LY'81 ¥a 899 45 9¢6'C plauterg
LETL LT'1e 161 69 99 £09 s¥¥'e tprusog
¢6'9L 1v'Lc 86°G1 06¢ £99 LLE 795°C BLIpUBXI[Y
€8°LC vL¥ve 91°0C 9¢9 126'C 687’c Te61L 193Sa>0Y
G96'6¢ 60'8¢ erav4 L18 798°C S¥0'C S0¥'01 Pno[d 1s
a8uey) VSI VSI (ey) (eY) V'SI 0002 (eY) VSI 0661 (ey) eary eary
JuadId] % 000C % 0661 auey) [ej0L

000C PUe 0661 I0J LJOSSUUIIA JO 9)LIG PUR ‘SPaYSIaEAL ‘SUOLIDI0DH ‘SaIUNO0)) ‘SaNI)) Pajdafag 10y sonsnelg (YS[) ealy aoeyng snoraraduy

€'131avl



Estimating and Mapping Impervious Surface Area by Regression 17

that watershed management efforts may need more rapid updating of land
cover information than on 10 or 20 year cycles.

1.4 Conclusions

A strong relationship between impervious surface area and greenness
enables percent impervious area on a pixel basis to be mapped with Landsat
TM/ETM+ data. Classification of the Landsat data provides a means to
map and quantify the degree of impervious surface area, an indicator of
environmental quality, over large geographic areas and over time at modest
cost. This chapter has described work concentrated on mapping impervi-
ousness over large areas using Landsat data; however, we have previously
reported (Sawaya et al.,, 2003) that the same methods can be successfully
applied to high-resolution IKONOS satellite imagery of local areas.

Although we are at an early stage in the analysis of spatial and temporal
patterns of urban growth and imperviousness, the Minnesota Pollution
Control Agency is incorporating the impervious cover data, obtained from
Landsat satellite remote sensing, into watershed management efforts and
stormwater best management practice planning and monitoring efforts. An
increasing number of future community stormwater management efforts
are expected to have phosphorus- and sediment-loading rates determined
by formal TMDL allocation processes to restore and/or protect receiving
water quality and habitat—based on impervious cover and associated
stormwater management practices. The consistent impervious surface data
provided by the Landsat classifications for over 200 MS4 communities,
covered by the phase II stormwater regulations, are a new foundational
data layer needed for refining watershed management strategies for protec-
tion as well as for rehabilitation.

Increasing population, new development in lake and river recreation
areas, and growing cities and towns all translate into increasing impervious
surface areas across Minnesota. The Landsat classifications provide critic-
ally important, consistent, and multidate impervious surface area maps and
statistics for any area of Minnesota. It is envisioned that these data and
updates will be an important foundation of Minnesota’s stormwater man-
agement efforts. As urban stormwater runoff from impervious areas can
have profound negative impacts to receiving waters, it is a critical new
component of statewide stormwater education and management efforts.
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2.1 Introduction

Over the last century, especially since World War II, the process of urbani-
zation has increased and intensified all over the world. In addition to the
internal growth and restructuring of cities, emigration and demand for
more living space (Clarke and Gaydos, 1998) play a vital role in the spread
of urbanized areas. It is likely that this trend will continue in the twenty-first
century, eventually leading to the formation of Gigalopolises or supercities
containing hundreds of millions of people (Clarke and Gaydos, 1998).
According to a United Nations Population Division report, by the year
2015, the number of cities that have an urban population > 5 million will
go up to 58 from 39 in 2000 (UN, 2001). One of the problems associated with

21
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rapid urbanization is the concurrent increase (Xian and Crane, 2005) in
impervious surfaces, which include roads, sidewalks, parking lots, and
various rooftops, through which water cannot infiltrate into soil (Arnold
and Gibbons, 1996). A study (Elvidge et al., 2004) partly funded by NASA’s
land-cover land-use change program found that the aggregate impervious
surface area of continental United States was slightly less than the total
area of the state of Ohio. Although the percentage of impervious surface
to the total landmass of the United States is just over 1%, it is a matter of
great concern as impervious surface limits soil infiltration, threatens water
quality through increased flow of polluted runoff, contributes to flooding,
and creates heat islands (USEPA, 2003). Therefore, accurate estimation of
impervious surface is crucial for sustainable urban development and plan-
ning (Arnold and Gibbons, 1996; Flanagan and Civco, 2001; Goetz et al.,
2003; Wu and Murray, 2003; Dougherty et al., 2004; Xian and Crane, 2005;
Yang, 2006).

Motivated by the importance of impervious surfaces, many researchers
from various disciplines have attempted to estimate the amount and distri-
bution of urban impervious surfaces. In these studies, satellite imagery has
been very helpful as it could successfully characterize different land-cover
and land-use types (Ward et al., 2000; Yang, 2006). The coarse and medium
resolution of satellite imagery, however, has always been a hurdle to urban
planners and led to underutilization of satellite imagery in urban applica-
tions (Mesev, 1997; Carlson, 2003). Recently, greater accessibility to higher-
resolution satellite imagery and advanced computational techniques has
opened new frontiers for estimating and monitoring imperviousness
around urban growth centers (Yuan and Bauer, 2006). Utilization of high-
resolution satellite imagery in extracting impervious surfaces is likely to
be cost and time efficient when compared with the processes of manual
digitization over aerial photographs. Research findings indicate that high-
resolution IKONOS multispectral imagery allows measuring the relative
contributions of different materials in urban/ex-urban areas; furthermore,
their abundance could also be mapped in heterogeneous land-cover areas
(Small, 2003). IKONOS imagery has proved its worthiness in estimating
urban imperviousness (Goetz et al., 2003), although its high spatial reso-
lution increases the spectral complexity and variability in urban areas
(Herold et al., 2004).

For the purpose of urban imperviousness estimation, the vegetation-
impervious surface-soil (VIS) model proposed by Ridd (1995) seems to be
accepted by many scholars. The VIS model considers the combination of
impervious surface material, green vegetation, and exposed soil as the most
fundamental components of urban ecosystems if water surfaces are ignored.
However, there exists the problem of mixed pixels as they relate to urban
environments (Ridd, 1995; Wu, 2004; Song, 2005; Xian and Crane, 2005).
Mixed pixels occur when the acquired signal in a pixel results from various
land-cover types on the ground. Mixed pixels, associated with the difficulty
in distinguishing various surface materials in urban areas and sometimes
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unavailability of adequate training data for some classes, have always
hindered scholars in achieving satisfactory results. Earlier attempts to
solve these problems include better endmember selection, normalization
of the original image, or employing various computational techniques
(e.g., regression tree analysis). In most of these attempts, spectral mixing
among endmembers is predominantly considered to be linear although
there are issues related to nonlinear mixing as evident in both medium
(Wu and Murray, 2003) and high-resolution (Small, 2003) satellite data. In
this context, powerful computational techniques like artificial neural net-
works (ANNs) may yield better result in mapping nonlinear relations in
complex urban environments. ANNs provide a better alternative to statis-
tical classification techniques as they could map complex relationships
among variables without making any assumptions about the data (Ji, 2000;
Linderman et al.,, 2004; Ingram et al., 2005) and require fewer training
samples (Pal and Mather, 2003).

ANN classifiers have proven to be superior for classifying per-pixel
Landsat TM and ETM+ data to traditional classifiers such as maximum
likelihood and others (Ji, 2000; Dwivedi et al., 2004). ANNSs are also capable
of estimating subpixel imperviousness from medium-resolution satellite
imagery such as Landsat TM and ETM+ (Civco and Hurd, 1997; Flanagan
and Civco, 2001; Lee and Lathrop, 2006). Moreover, a comparison of spectral
unmixing models states that neural network models outperform the tradi-
tional linear unmixing models (Liu and Wu, 2005). Although ANN has the
ability to generate detailed land-use and land-cover information, its
potential in extracting subpixel impervious surface information from high-
resolution remote sensing imagery is still in question. Traditionally, ANN
has been utilized for per-pixel classification (hard classification), in which
spectral values represented as digital numbers or reflectance values are
grouped together to form certain classes. The ANN, however, could also
be used to perform spectral unmixing through subpixel classification (soft
classification). Subpixel classification employs pure land-cover classes as
inputs and yields a group of images representing the degree of membership
of a pixel to each possible class (Mertens et al., 2004; Lee and Lathrop, 2006).

The main objective of this chapter is to establish a neural network model
to estimate subpixel urban imperviousness from high spatial resolution
remotely sensed imagery. A three-layered feed-forward back-propagation
model, the most widely used neural network model for soft classifica-
tion (Liu and Wu, 2005; Lee and Lathrop, 2006), was employed in the
present study. Activation-level maps (Eastman, 2003), which explain the
degree of membership of each pixel to each class (e.g., impervious surface),
were generated with the ANN model. The soft ANN classification method
was utilized in the present study, in which small numbers of pure vegetation,
impervious surface, and soil samples were used as training data to esti-
mate the fraction of these land-cover types. Three different methods were
explored to convert the degree of membership of each pixel into percentage
imperviousness. The estimated imperviousness was compared with the
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true imperviousness for accuracy assessment. The rest of the chapter is
organized into the following sections: Section 2 describes the study area
and data. The methodology including a general description of neural net-
work and activation-level maps is described in Section 3. Section 4 reports
the results and verification of the results. Finally, in Section 5, the chapter
ends with conclusions and future scope.

2.2 Study Area and Data

The study area (Figure 2.1) covers Grafton village and township in Ozaukee
County, Wisconsin, United States. This area was chosen because of the
availability of the IKONOS image and its diversified urban and rural land
uses. The total land area of Grafton is roughly 24 mi* (Census, 2000). Grafton
is one of the rapidly growing (SEWRPC, 2004) suburban areas around
the city of Milwaukee, Wisconsin, and exhibits a mixed land-use pattern
comprising agriculture, forestry, residential, commercial, transportation,
and so on. An IKONOS satellite image (Figure 2.2) of September 3, 2002,
and a color aerial photograph for the same year were collected from
the American Geographical Society Library (AGSL) at the University of
Wisconsin-Milwaukee. The multispectral IKONOS image comprises

Grafton village and township

Wisconsin counties

Ozaukee

Milwaukee
50 250 50 100
km

1000500 0O 1000 2000
m

FIGURE 2.1

Grafton village and township in Ozaukee county of Wisconsin (map on the left shows location
of Grafton in Wisconsin; map on the right shows the boundary of Grafton village and township
over the color aerial photograph).
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FIGURE 2.2
IKONOS imagery (reflectance values) for the study area obtained on September 3, 2002.

four bands (blue, green, red, and near-infrared [NIR]) and the color aerial
photograph, with a resolution of 2 ft, has three bands: blue, green, and red.
Because of these three channels, the color aerial photograph is very helpful
in identifying various impervious surfaces for choosing training and testing
data sets. Both the IKONOS image and aerial photograph are in the State
Plane projection. For this study, they were reprojected to UTM (WGS84,
Zone 16) to match the land-use and land-cover data that were used for
reference. Visual inspection of IKONOS over aerial photograph revealed a
slight misregistration. To avoid issues related to misregistration and ensure
a higher level of accuracy, the IKONOS image was georeferenced using the
aerial photograph as the reference image. According to Song et al. (2001),
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atmospheric correction will not affect the results using image endmembers,
thus it is not applied to the image. The radiance values of the IKONOS
image were converted to exoatmospheric reflectance values following
the standard procedure provided in the Space Imaging documents
(Space Imaging, 2005). Water features were masked out from the original
image to avoid confusion during classification and impervious surface
percentage calculation.

2.3 Methodology
2.3.1 Artificial Neural Networks

ANNSs are composed of simple processing units called nodes (or artificial
neurons) and operating links. Two or more nodes are combined to form
a layer; a neural network may contain two or more layers. The nodes orga-
nized in layers and the links between successive layers provide ANNs
a learning ability similar to humans; they are taught by sample data in a
similar fashion as the human brain learns. ANNs mostly try to mimic the
functioning of the human brain while exploring geographical data. During
training, initial weights assigned to interconnection links are modified
repeatedly until the ANN can produce an acceptable result that matches
the testing samples. The feed-forward ANN models are well trained
through back-propagation algorithms known as the delta rule (Eastman,
2003). A feed-forward back-propagation neural network calculates a pixel’s
activation values for all land-cover classes under consideration. In a hard
ANN classification, the highest activation value is selected and the pixel is
assigned to the corresponding class. However, the same activation values
can be used to represent land-cover class memberships (Lee and Lathrop,
2006) and this is known as soft ANN classification approach. In this study, a
soft ANN classification approach was followed to estimate the proportion of
impervious surface for each individual pixel of the IKONOS image.
Several researchers have explored the effects of the number of layers and
nodes on analyzing complex nonlinear data (Kavzoglu and Mather, 2003;
Linderman et al., 2004). Typically, three-layer networks are widely used in
image processing and subpixel information extraction from satellite
imagery (Civco and Hurd, 1997; Flanagan and Civco, 2001; Kavzoglu and
Mather, 2003; Liu and Wu, 2005), where the three types of layers are input
layer, hidden layer, and output layer (Figure 2.3). The function of the
input layer is to provide data (e.g., satellite imagery) into the model. The
hidden layer, an invisible layer between input and output layers, is used to
process the data and pass the results to the output layer. The output layer
then constructs the output pattern (e.g., land-cover classes) based on the
combination of information received from the hidden layer. The number of
nodes in the input layer equals the number of bands of satellite image
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FIGURE 2.3 (See color insert following page 292.)
Artificial neural network structure.

and the number of nodes in the output layer is equivalent to the number of
desired land-cover classes. The number of hidden layers and nodes required
to obtain an accurate estimation could not be unanimously decided yet
and there is no optimal structure that could be used in every situation
(Li and Yeh, 2002; Kavzoglu and Mather, 2003). Too many hidden layer
nodes amplify the amount of information leading to overfitting, whereas
fewer nodes in the hidden layer reduce the amount of data that are neces-
sary to identify the internal structure and lead to underfitting (Kavzoglu
and Mather, 2003).

In this chapter, NEURALNET module available in IDRISI Kilimanjaro
software made available by the Clark Labs was utilized to obtain the
subpixel imperviousness. The NEURALNET (neural network) module
uses the popular back propagation learning algorithm for classifying
remotely sensed imagery (Eastman, 2003). The ANN classifier used the
following algorithm to quantify the information at a single node j in the

output layer:
net; = Zwi]‘ I;,
i

where
net; is the information that an output node j receives
w;; represents the weights between node i and node j
I; refers to the information from node i of a sender layer (e.g., input or
hidden layer)

The receiver node (artificial neuron in the output layer) creates a certain
activation level in response to the incoming information net;. The output at
given node j(O;) is computed from



28 Remote Sensing of Impervious Surfaces

O; = f(net;),

where f is a nonlinear sigmoidal function popularly known as activation
function.

2.3.2 Activation-Level Maps

The activation function is applied to the weighted sum of inputs before
passing the information to the next layer. When an input pixel is presented
to ANN, each output node is assigned a value that is compared with the
expected value. With few exceptions, the assigned value would always
differ from the expected value at the output node; the difference is the
error propagated backward for relevant corrections via the delta rule
in NEURALNET (Eastman, 2003). When the output result achieves a
predefined accuracy level, the input pixel is assigned an activation value
ranging between 0 and 1 where larger values represent a higher degree of
membership belonging to the corresponding node (land-cover class). Out-
put from NEURALNET can be binary (hard classification) or continuous
(soft classification) value. The result from hard classification gives a the-
matic map where the pixels are grouped into desired classes based on the
association of highest activation levels of the nodes. In the soft classification,
the pixels are assigned the highest activation value of each node and
produce as many images (activation-level maps) as the total number of
nodes in the output layer. These activation-level maps express to what
degree a pixel belongs to each node (land-cover class) in the output layer.
For example, a pixel with a value of 0.82 at a particular node expresses
the degree of membership of that pixel belonging to the corresponding
land-cover class as 0.82. Although the output from ANNSs in the form of
activation-level maps ranges between 0 and 1, it is not necessary that the
sum of activation values of all the land-cover classes for any given pixel will
be equal to one as the outputs are obtained by fuzzying the input data into
values in the range 0-1. As the study is focused toward subpixel informa-
tion extraction, only the soft classification results were obtained from
NEURALNET.

2.3.3 Neural Network Structure

To achieve higher accuracies while extracting subpixel fraction of various
land-cover classes from remote sensing imagery through ANN classifiers, it
is necessary to design an optimal network structure and set proper learning
parameters. The structure of the neural network used in this study is
described in Figure 2.3. In the input layer, four nodes represent four spectral
bands of the IKONOS image. In NEURALNET, by default, the number
of input images determines the number of input layer nodes; in this case, it
is four: blue, green, red, and NIR. The number of output layer nodes is
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dependent on the number of training categories defined in the training site
file; in this case, it is three corresponding to the three land-cover features
vegetation, impervious surface, and soil. There is a need to determine the
number of nodes for the hidden layer. For this study, it is estimated to be
between 3 and 4 but the larger number was used as it helps in differentiating
complex land covers (Kavzoglu and Mather, 2003). The number of nodes for
the hidden layer was estimated by the following equation

Np = INTy/N;j X N,,

where
Ny, is the number of hidden layer nodes
Nj is the number of input layer nodes
N, is the number of output layer nodes

Besides ANN structure, several other parameters, such as sigmoid func-
tion constant, learning rate, and momentum factor, influence the per-
formance of the classifier. The sigmoid function constant determines
the shape of the sigmoidal curve and the gradient. The learning rate par-
ameter controls the connecting weights. The momentum factor helps in
avoiding oscillation problems during the search for minimum value on
the error surface. According to Kavzoglu and Mather (2003), a value
in the range of 0.1-0.2 is appropriate for the learning rate and a value of
0.5-0.6 for the momentum factor might yield a better result. As obtaining
the proper combination of these parameters is just a trial and error process,
various combinations of these parameters were tried to find the best result.

2.3.4 Training and Testing Sample Selection

Like other traditional classifiers, providing proper training and testing
samples is another important aspect of ANN. In this study, training
and testing samples was obtained for three different land-cover classes
(vegetation, impervious surface, and soil). A vector file was created with
30 sampling sites for each class; the sites are distributed all over the study
area so that they could represent both spatial and spectral variations among
the classes under consideration. Training the neural network requires a
certain number of training and testing pixels per category (must be between
0 and 200, in NEURALNET). The training and testing pixels used in the
analysis are a subset of the total pixels found in the training site file, which
was obtained from the IKONOS image. The testing pixels are required for
setting an accuracy rate (in this case it is 95%) that is used to terminate the
ANN classifier. As it is advised not to use a very small number of training
pixels, in this study 100 pixels randomly selected from the 30 sampling sites
for each land-cover class were used to train the ANN classifier, and another
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100 testing pixels for each land-cover class were used to compute the
accuracy rate.

2.4 Results

After finalizing the network structure, various combinations of learning rate
and momentum factors were tested to obtain the optimal convergence. By
analyzing the sigmoid function curve, it was ascertained that a learning rate
of 0.16 and a momentum factor of 0.57 produce a better result. The ANN
classifier was allowed to automatically decide the sigmoid function constant
(14.48). After setting all these parameters, the network was trained and then
activation-level maps were obtained for three different land-cover classes.
The output in the form of an activation-level map for impervious surface is
shown in Figure 2.4. The values in the map are in the range of 0-1 representing
the degree of membership to imperviousness. The higher the value, the more
likely that the pixel contains a larger amount of impervious surfaces. As the
activation-level maps represent the likelihood of a pixel belonging to a par-
ticular land-cover class, it could be inferred that this likelihood should closely
relate to the percentages of that land-cover class within the pixel.

Impervious surface fraction

1000 500 O 1000 2000
[ == = e—)

200 100 O 200 400
[ == = — )]

FIGURE 2.4
Impervious surface fraction imagery obtained through the ANN model.
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2.4.1 Output Transformation

The results generated from the ANN classifier indicate the degree of mem-
bership that a pixel belongs to impervious surfaces, not exactly the percent-
age of impervious surfaces within that pixel. To compare with the “real”
impervious surface percentage on the ground, several transformation
methods have been applied to the ANN results. In the first method (method
1), the average activation values of a 5 X5 pixel window of impervious
surface activation-level map were converted into percentage by simply
multiplying the original value with 100. The fraction values obtained from
activation-level maps were converted to percentage so that the real imper-
viousness, which is in percentage, could be compared with the estimated
one. In the second method (method 2), at first a normalization technique
was applied on the estimated mean activation values of impervious surfaces
so that it ranges exactly between 0 and 1. Then this normalized fraction
value of impervious surface (x;) was converted into percentage for further
comparison with the real imperviousness. The normalization was carried
out following the equation mentioned below
X — xmin
Y = Jmax _ min”’
xmax — x

where

x;j is the estimated value of x; after normalization

x™" and x™* are the minimum and maximum values of a given set

of data

The third method (method 3) takes into account all three land-cover
classes for estimating the percentage of impervious surfaces. As the VIS
model of Ridd (1995) was followed for unmixing of the IKONOS
pixel composition, the average activation values of three different land-
cover classes (vegetation, impervious surface, and soil) were added to get
the cumulative activation value for a particular sampling unit. Once the
total activation value is calculated for a sampling unit, considering this
cumulative activation value as 100%, the proportions for three land-cover
classes were computed. However, as the present study focuses only on the
estimation of impervious surface fraction, the calculation was restricted to
impervious surface.

2.4.2 Result Verification

To evaluate the effectiveness of the established methods, it is necessary to
compare these results obtained through ANN classifier with the reality
on the ground. One hundred and fifty random samples with a sampling
unit of 5 X 5 pixels were created to compare the results. For each sample, a
20 m X 20 m sampling window was used to digitize the real impervious
surface over color aerial photograph manually. The real percentage of
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imperviousness was calculated by dividing digitized impervious surface
area to the total area of a sampling unit (400 m®) and then multiplying the
result by 100. The imperviousness of IKONOS pixels was obtained from the
activation-level maps. A zonal statistics tool available in ERDAS imagine
was used to estimate the mean activation value for the sampling units.

Two quantitative estimators were used to compare the estimated percent-
age imperviousness with the real percentage imperviousness. The estimators
are the Pearson’s correlation coefficient (R) and mean average error (MAE).
The correlation coefficient is a measure of reliability and describes the
strength of relationship between the estimated and real imperviousness.
The MAE is about the relative prediction error and is estimated as

1 A
MAE = > -1,

where
I; is the real imperviousness for sampling unit i obtained from color
aerial photograph
I; is the estimated imperviousness for the same sampling unit i
N is the total number of samples

The estimated results obtained through the previously mentioned
methods (methods 1, 2, and 3) are reported in Table 2.1. The best result
was obtained through method 2 while comparing the estimated impervi-
ousness to the real imperviousness. The MAE for method 2 was 7.87
whereas for methods 1 and 3 it is 9.14 and 9.99, respectively. This suggests
the effectiveness of normalization of activation values in attaining a lesser
prediction error. The Pearson’s correlation coefficients (0.94, 0.94, and 0.93
for methods 1, 2, and 3, respectively) reveal that there is a strong corres-
pondence between the predicted percent imperviousness and the real per-
cent imperviousness. The estimated percentage imperviousness for all the
150 sampling units was plotted against the real percentage imperviousness
(Figure 2.5a through c). In methods 1 (Figure 2.5a) and 3 (Figure 2.5¢), it is
observed that there is an underestimation of impervious surface fraction.
Figure 2.5b (method 2) reveals that there are certain sampling units where the
real imperviousness is 0% but in the result obtained through ANN it shows a

TABLE 2.1

Accuracy Assessments of Impervious
Surface Estimation

R MAE
Method 1 0.94° 9.14
Method 2 0.94° 7.87
Method 3 0.937 9.99

® Correlation is significant at the 0.01 level
(one tailed).
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very high percentage of imperviousness. A crossverification of these
sampling units with the help of aerial color photograph reveals that in
reality these sampling units are located on recently ploughed agricultural
fields. It is also observed that misclassification of soil as impervious surface
is enhanced in method 2 although the best MAE (7.78) and correlation
coefficient (0.94) are achieved through this method.
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FIGURE 2.5
Results of impervious surface estimation accuracy assessment (a) method 1, (b) method 2, and
(continued)
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FIGURE 2.5 (continued)
(c) method 3.

2.5 Conclusion

This chapter has explored a method that uses a three-layered neural net-
work classifier to extract subpixel impervious surface information from
high-resolution satellite imagery. The study successfully demonstrated the
usefulness of ANNSs in extracting subpixel impervious information from
pixels of 4 m X 4 m IKONOS image with very few training data. Results
show that the soft ANN classification method has potential in estimating
impervious surface fraction in an urban/ex-urban area. The result is encour-
aging while differentiating most of the impervious surfaces from vegetation,
although some confusion between soil and impervious surface still exists.
The study also proved that the activation-level maps, which explain the
degree of membership of various underlying land covers, are very well
correlated with subpixel information. Therefore, the spectral information
of pure land-cover classes, instead of the fraction information from mixed
pixels, can be utilized to train the ANN.

The established method has been successfully applied to extract the
subpixel imperviousness in the fast-growing Grafton area near Milwaukee
where the land use ranges from rural to urban. In particular, comparing the
impervious surface estimates with the ‘“real’” information digitized
from aerial photos, high R* and low MAE values have been obtained.
Nevertheless, better results might be achieved through better training of
the neural network as it is helpful in improving the classification results and
by addressing the issues relating to the misclassification of ploughed soil as
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impervious surface. The future developments to the established method
could be achieved by incorporating ancillary information such as the
increased textual information available in IKONOS image, and moisture
and temperature information obtained from medium-resolution satel-
lite data. As the obtained information provides meaningful data to urban
planners and policy makers, there is a need for further examination of this
method in other urban/ex-urban areas to prove its global worthiness.
Although one of the disadvantages of the ANN algorithm is the black-box
nature of functioning, where the expert does not intervene in defining
the relation between input and output, further research in enhancing the
method is needed as the method provides a practical way to extract subpixel
imperviousness information on a fine scale.
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3.1 Introduction

Urban development is usually associated with the conversion of land in rural
areas to residential and commercial land use. As the extent of built-up land
increases, further development generally raises concerns about the impacts
of land use and land cover (LULC) change on urban and rural environmental
conditions and on quality of life. Spatial distributions and patterns of LULC
often affect socioeconomic (Douglass, 2000), environmental (Gillies et al.,
2003), and regional climatic conditions (Arnfield, 2003; Kalnay and Cai,
2003; Voogt and Oke, 2003). The influences of urban environments on the

39
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global population and the monitoring of spatial-temporal changes in large
urban and suburban areas are both becoming increasingly important (Small,
2001). The ability to monitor urban LULC changes is highly desired by local
communities and by urban management to help provide a more detailed
picture of the human-influenced landscape (Carlson, 2003).

Many previous studies focused on qualitative descriptions of conditions
in administrative regions, rather than defining regions quantitatively based
on urban growth and urbanization. Using administrative definitions of
urban extent has many benefits, but physical measurements of urban
areas from remotely sensed imagery can provide a self-consistent metric
and enable comparative analysis of urban extent in transboundary regions
(Davis and Schaub, 2005; Small et al., 2005). Physical measurement metrics
overcome such difficulties as capturing changes in the exurban rural fringe,
often characterized by scattered, low-density development, and distinguish-
ing between a moderate- and a fast-growth city. Studies have indicated that
increased availability and improved quality of multispatial and multitem-
poral remote sensing data, as well as new analytical techniques, make it
possible to monitor urban LCLU changes and urban sprawl in a timely and
cost-effective way (Weng, 2001; Seto and Liu, 2003; Wu, 2004).

One successful approach that was designed to map and measure the area
of impervious surfaces using remote sensing information was applied to
urban land-use estimation at a local or regional scale (Ward et al., 2000;
Gillies et al., 2003; Carlson, 2004; Xian and Crane, 2005, 2006; Lu and Weng,
2006). Impervious surface area (ISA) is considered a key indicator of envir-
onmental quality and can be used to address complex urban environmental
issues, particularly those related to the health of urban watersheds (Schueler,
1994). ISA is also an indicator of non-point source pollution or polluted
runoff (Slonecker et al., 2001). ISA is highly connected to urban land-use
condition, such as the size and density of built-up areas (Plunk et al., 1990;
Morgan et al., 1993; Hebble et al., 2001).

However, urban landscapes are highly heterogeneous, and most urban
image pixels in remotely sensed imagery, such as those from Landsat and
other similar sensors, are composed of a mixture of different surfaces.
Nearly every pixel in an urban area represents a mixture of different land
cover types including grass, trees, sidewalks, driveways, roads, and build-
ings. Pixel-level analysis often creates considerable spectral confusion,
especially in residential areas where impervious surfaces are usually
mixed with tree canopy and other vegetation coverage (Clapham, 2003).
To quantify spatial extents and distribution patterns of urban LULC by
using satellite remote sensing data, subpixel analysis is needed (Ji and
Jensen, 1999; Yang et al., 2003; Xian et al., 2006). Subpixel techniques break
down the mixed pixel into percentages of its components based on spectral
characteristics and provide quantifiable measurements of ISA. By selecting
different ISA threshold values, subpixel percent ISA data derived from
medium-resolution satellite images, such as Landsat imagery, have been
used to quantitatively determine the spatial extent and development density
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of large urban areas (Xian, 2006). Physical measurements of urban areas
from remotely sensed data provide a self-consistent metric for urban LULC
analysis. Studies of urban LULC have benefited from widely available data
sources, which have allowed researchers to overcome data inconsistencies
across administration boundaries. The current National Land Cover Data-
base (NLCD) developed by the US Geological Survey (USGS) provides a
one-time per-pixel percent imperviousness dataset for the entire United
States (NLCD, 2001). This dataset is available for investigations of nation-
wide impervious surface distribution.

This chapter investigates the spatial distribution and changes over time of
impervious surfaces and associated urban land-use conditions by applying a
recently developed subpixel imperviousness assessment model (SIAM) app-
roach (Xian, 2006). Landsat satellite data were used to quantify multitemporal
variations of urban spatial extents and development intensities in two geo-
graphic locations—Seattle-Tacoma, Washington and Las Vegas, Nevada.
Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus
(ETM+) images, in combination with high-resolution aerial photographs,
were used as the primary source for the estimation of multitemporal subpixel
ISA distribution in these two areas. Accuracy has been analyzed by classifying
high-resolution orthoimages to calculate true ISA extent and comparing that
with model-derived impervious surfaces. In addition, the study summarized
general characteristics of ISA and associated urban LULC features, including
housing densities and spatial extents of development. Results supported
practical applications and were of interest to urban planners and management
communities, as well as to natural resource and natural hazards researchers.

3.2 Selection of Study Areas

Two geographically different regions—Seattle-Tacoma, Washington on the
western coast and Las Vegas, Nevada in the western inland—were selected
as the study areas (Figure 3.1). Both regions have a history of long-term
urban development and both have experienced tremendous growth in the
past 20 years. Growth management policies have been implemented to
prioritize urban development and urban land uses in different zonings in
these regions. In addition, high-resolution aerial photos have been routinely
collected by the local governments in Seattle-Tacoma and Las Vegas for use
in planning and monitoring.

3.2.1 Seattle-Tacoma Area

The first study area was the Seattle-Tacoma region, which lies in the north-
west corner of the continental United States, on Puget Sound in western
Washington. This area extends about 140 km north to south and 60 km east
to west. It encompasses 6700 km? of land in Island, King, Kitsap, and Pierce



42 Remote Sensing of Impervious Surfaces

Skagit
Island
Snohomish
Jefferson
Kitsap Seattle

King

Tacoma

. Las vegas
Pierce
037575 15 225 3(;0“
0 1020 40 60 80
km
FIGURE 3.1

Seattle-Tacoma metropolitan area (left) in western Washington State. The Las Vegas Valley
(low right) is in the southern part of Nevada.

counties. Major cities include Seattle, Tacoma, Bremerton, and Marysville.
More than 3 million people reside in this region.

The Seattle-Tacoma area’s temperate climate and growing economy have
led to the cities being ranked as some of the most livable in the United
States. The corridor of Interstate five connects most major cities in the
region. The total population of these cities has almost doubled since 1965.
Associated with this population growth is an increase in urbanization and
sprawl. In King County between 1970 and 2000, for example, the population
increased 44%, from 1.2 to 1.7 million, whereas the number of households
increased by 72%, from 400,000 to 680,000 (KCORPP, 2006). Growth man-
agement efforts started in 1964 when King County introduced a compre-
hensive plan. Serious growth management efforts were implemented in the
1985 and 1994 comprehensive plans to manage new growth while meeting
economic needs and providing affordable housing (Robinson et al., 2005).
The main goals introduced by the growth management plan included
encouraging development in urban areas and discouraging inappropriate
low-density development. Residential developments in urban areas were
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zoned for higher residential densities, usually 1-12 dwelling units per acre,
whereas rural areas were zoned for lower residential densities, generally
1 dwelling unit per 2.5-10 acres (KCORPP, 2006). Forest and agricultural
areas were also zoned for very low residential densities of 1 dwelling unit
per 10-80 acres. As a result, urban growth planning in King County had a
dual approach: most new growth desired over a 20-year planning period
was to be within urban growth boundaries (UGBs), while low-density
residential zoning and long-time resource production lands were planned
to reduce the potential for new development outside the UGBs.

3.2.2 Las Vegas Valley

The Las Vegas Valley is located in southern Nevada and encompasses about
1320 kmz, including the cities of Las Vegas, Henderson, North Las Vegas,
and Boulder City. The area’s dry and hot desert climate and its gaming and
entertainment facilities attract many people to visit and live in the region.
Outside the city, natural vegetation consists of desert flora; inside the city,
landscaping with grass, shrubs, and trees is common. However, gravel and
bare sandy soils that, on satellite images, appear similar to concrete are also
found throughout the urban area (Xian and Crane, 2006). The region has
experienced a remarkable increase in urban land use over the past 50 years.
According to Census data, the population of Clark County increased from
<50,000 in 1950 to slightly >740,000 in 1990 and >1.37 million in 2000 (Clark
County, 2006). The population in the Las Vegas Valley urban area reached
1.36 million in 2000 and increased to >1.68 million in 2004. This population
increase makes Las Vegas the fastest-growing metro area in the United
States (Frey, 2005). Tremendous housing developments have been built to
meet the needs of population growth. Total housing units reached 680,897 in
2005 in the Las Vegas Valley urban area. Single-family detached housing
and apartments made up 53.3% and 27.6% of total housing units, respec-
tively. Comprehensive planning that focused on zoning-based districts
developments has been introduced to manage growth in Clark County. In
rural areas of Clark County, residential density is designated as 0.5-3
dwelling units per acre. In the suburban and compact single-family resi-
dential districts, dwelling units per acre range from 5 to 14. In the multi-
family residential districts, dwelling units per acre range from 18 to 50
(Clark County, 2006).

3.3 Impervious Surface Estimations

The anthropogenic impervious surfaces associated with urban development
have been used to assess spatial and temporal variations of urban land use.
This study used SIAM, which was developed to map multitemporal sub-
pixel ISA estimates. The method requires high-resolution imagery to create
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a training dataset and medium-resolution imagery to estimate ISA in a large
area through regression tree models. Details of the method have been
described in Xian (2006).

3.3.1 Data

Two types of remote sensing data are required to map ISA. One type
consists of high-resolution images that usually have at least 1-m spatial
resolution, such as 1 m digital orthophoto quarter quadrangles (DOQQ),
which are generated from aerial photography. Other high-resolution image
sources include QuickBird or 0.3 m orthoimagery. Another type of required
data is medium-resolution satellite imagery, such as Landsat, Advanced
Land Imager (ALI), and Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER), which cover larger areas than DOQQ.
High-resolution images are normally used to build training and validation
datasets for regression models and to conduct accuracy assessments.
Medium-resolution images are used for ISA estimation in a large area.

Generally, the number of high-resolution images selected for a training
dataset depends on the size of the study area. We usually select images that
canrepresent major urban LULC features in differentlocations. However, there
is no specific requirement for the maximum number of images. Eight 0.3 m
orthoimages acquired from eight different locations in the Seattle metropolitan
area were selected. Each Seattle orthoimage covers ~1.6 km X 1.6 km. Similarly,
eight 0.3 m orthoimages from eight different locations were selected for the
Las Vegas Valley. Each Las Vegas orthoimage covers ~1.5 km X 1.5 km.
All orthoimages were downloaded from the USGS Seamless Data Distribu-
tion System (http://seamless.usgs.gov) as simulated natural color com-
posites in a Universal Transverse Mercator (UTM) projection (zone 10 for
Seattle, zone 11 for Las Vegas), referenced to the North American Datum
of 1983.

For the Seattle area, four Landsat scenes were selected for path 46, rows 26
and 27: two scenes of Landsat TM from August 26, 1986 and two scenes of
Landsat ETM+ from August 14, 2002. For the Las Vegas area, two Landsat
scenes were selected from 2002 for path 39, row 35: one Landsat TM
scene from April 13, 1984 and one ETM+ scene from June 10. Images for
both Seattle and Las Vegas were acquired in clear skies for the entire area to
minimize atmospheric scatter effects. All images were preprocessed by the
USGS Center for Earth Resources Observation and Science (EROS) to
correct radiometric and geometric distortions of the images. Terrain correc-
tion was applied using a digital elevation model to correct errors caused by
local topographic relief. No atmospheric corrections were made to the Land-
sat images. Visual inspection showed that the coregistration uncertainty
between the Landsat images and orthoimages was within 0.1 m. Slopes
derived from USGS 30 m DEM for both Seattle and Las Vegas areas were
also used for helping to distinguish imperviousness from other types of
land cover.
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FIGURE 3.2
A 0.3 m orthoimage from the south of Tacoma (left), classification of urban and nonurban
(middle), and 30 m percent impervious surface (right).

3.3.2 Classifications of High-Resolution Images

The orthoimages used to build the training dataset had to be first processed
into urban and nonurban land-use classes. This procedure can be done
manually through photo interpretation, which is very labor intensive, or
through the use of automated feature extraction software. We used Feature
Analyst* software, which is able to identify several samples and then run a
supervised classification based on them. Once samples were identified and
the classification run, the results were all merged into one high-resolution
raster dataset. Nonimpervious areas were removed through manual inter-
pretation. The classification accuracy of high-resolution images was over
99%. Pixels classified as urban were then totaled to calculate impervious
surface as a percentage and the result was rescaled to 30 m to match Landsat
pixels. Figure 3.2 presents results from processing one orthoimage to obtain
a 30 m imperviousness training dataset near downtown Tacoma. All build-
ings and roads were included in measurements of impervious surfaces in
each 30 m pixel.

3.3.3 Landsat Imagery

Landsat images in digital number (DN) were first converted to spectral
radiance at the sensor and then to at-satellite reflectance using procedures
provided by the Landsat Science Data Users Handbook (Landsat Project
Science Office, 2006). Reflectance bands 1 through 5 and 7 were used at a
spatial resolution of 30 m. Reflectance values from the visible and near-
infrared bands of Landsat images were used to compute the Normalized

*Use of any trade, product, or company names is for descriptive purposes only and does not
imply endorsement by the U.S. Government. Limited information on this program can be found
at http: //www featureanalyst.com/.
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Difference Vegetation Index (NDVI) values. The Landsat thermal bands had
their original pixel sizes of 120 m for TM and 60 m for ETM+ images
resampled to 30 m using the nearest neighbor algorithm to match the
pixel size of the other spectral bands.

3.3.4 Regression Tree Models

To estimate ISA in a large area, SIAM uses close-to-true percent impervi-
ousness datasets derived from high-resolution imagery as dependent vari-
ables in the regression tree models. Landsat reflectance, thermal bands, and
derived information such as the NDVI, together with other geographic
information such as slope, are then used as independent variables to build
regression tree models.

The regression tree model is a machine-learning algorithm. Regression
trees are constructed using a partitioning algorithm, which builds a tree by
recursively splitting the training sample into smaller subsets. In the parti-
tioning process, each split is made such that the model’s combined residual
error for the two subsets is significantly lower than the residual error of the
single best model. A set of rules are produced for predicting a target
variable (percent imperviousness) based on training data. Each rule set
defines the condition under which a multivariate linear regression model
is established for prediction (Breiman et al., 1984; Quinlan, 1993). Each rule
includes three parts: statistical descriptions of the rule, conditions that
determine if the rule can be used, and a linear model. The statistical
descriptions present the number of cases covered by the rule, the mean
range of the dependent variable, and a rough estimate of the error to be
expected when this rule is used for new data. The condition for each rule
controls the values of independent variables by different thresholds.
The linear model is a simplified equation to fit the training data covered
by the rule. Models based on the regression tree provide a proposition
logic representation of these conditions in the form of number tree rules.
Generally, the model can be expressed as

Rule i: If conditions for x1, x», X3,..., X, are true, then

Yi=a + Z b]‘x]‘, (31)
j=1

where
i is the ith rule
x, are independent variables
yi is the dependent variable (percent ISA)
a; and b; are constants
m is the number of independent variables used in the ith rule

The value of i ranged from 10 to 20 at different times. Each rule was formed
according to the conditions generated from evaluating the training cases.
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The main advantages of the regression tree algorithm include simplifying
of complicated nonlinear relationships between predictive and target vari-
ables into a multivariate linear relation and accepting both continuous and
discrete variables as input data for continuous variable prediction. The
Cubist regression tree algorithm was used to estimate percent impervious
surfaces for the Seattle and Las Vegas areas.

3.3.5 Imperviousness Estimates

Percent impervious surface distributions in 1986 and 2002 in the Seattle
area, and 1984 and 2002 in the Las Vegas Valley, were mapped at a subpixel
level. Landsat reflectance, NDVI derived from Landsat reflectance and
thermal bands, and slope information were all input as independent
variables to build regression tree models. NDVI helped to discriminate
urban residential land use from rural land in areas where housing was
mixed with trees and other vegetation canopy. The Landsat thermal
bands, however, were helpful for eliminating nonimpervious areas, espe-
cially at the urban fringe of Las Vegas. Slope layers helped eliminate steep
areas that were misclassified as urban in the mountain ranges surrounding
Las Vegas because most urban areas have developed in valleys or on the
lower alluvial flanks of the mountains. Slope also improved ISA estimates
for the Seattle area. Due to the uncertainty of the regression model predic-
tion for imperviousness, a 10% threshold was selected for capturing almost
all developed land, including low-, medium-, and high-density residential
and commercial areas and eliminating most uncertain pixels from urban
land use. Pixels with a 30 m spatial resolution were classified as urban
when their ISA values were >10%. Pixels with ISA values of <10% were
classified as nonurban. Furthermore, urban development densities were
also defined by different ISA thresholds such as 10%-40% for low-density
urban, 41%-60% for medium-density urban, and 60% or higher for high-
density urban.

Figure 3.3 represents the spatial distribution of ISA for both regions. The
Puget Sound metro region is the most developed in the Seattle area. Total
areas with imperviousness >10% rose from ~1285 km? in 1986 to 2007 km?
in 2002, representing a 56% increase in urban land use. Many high-density
urban areas (ISA >60%) were found within the metro regions. Most new
developments occurred on the eastern side of Seattle and the southern part
of Tacoma in King and Pierce counties. Table 3.1 presents pixel numbers of
three ISA categories and their proportions to the total land area. The low-,
medium-, and high-density urban areas took about 9.0%, 6.3%, and 3.7%,
respectively, of the total land area in 1986. These percentages increased to
14.8%, 9.4%, and 5.6% in 2002.

In the Las Vegas Valley, the wide distribution of impervious surface is a
reflection of how urban development expanded in almost all directions
(Figure 3.3). The spatial extent of urban land delineated by the 10% ISA
threshold measured ~290 km? in 1984 and increased 113% to about 620 km?
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FIGURE 3.3 (See color insert following page 292.)
Impervious surfaces in 1986 and 2002 in Seattle, 1984 and 2002 in Las Vegas.

in 2002. During the 1980s, most medium- to high-percentage ISA were
located in the downtown and Las Vegas strip areas. More recently,
high-percentage ISA has expanded to the southeast and northwest portions
of Las Vegas. Table 3.2 represents numbers of pixels for each impervious-
ness category and their percentages of total area of the valley. The low-,
medium-, and high-density impervious surfaces were summarized as 2.3%,
4.2%, and 3.8%, respectively, of the total land area in 1984. The proportions
increased to 4.9%, 7.4%, and 9.5% for the three imperviousness categories
in 2002.

TABLE 3.1

Impervious Surface Estimation by Pixel Numbers in the Seattle Area

Low Medium
10%-40% 41%-60% ngh >60%
Year (% of Total Land) (% of Total Land) (% of Total Land)
1986 676,439 (9.0) 470,603 (6.3) 280,187 (3.7)

2002 1,104,363 (14.8) 705,676 (9.4) 419,917 (5.6)
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TABLE 3.2

Impervious Surface Estimation by Pixel Numbers in the Las Vegas Area

Low 10%—40% Medium 41%-60% High >60%
Year (% of Total Area) (% of Total Area) (% of Total Area)
1984 70,827 (2.3) 130,284 (4.2) 120,038 (3.8)
2002 155,043 (4.9) 233,114 (7.4) 298,609 (9.5)

To evaluate temporal variations of ISA, percent imperviousness was
summed in 10% increments and are displayed in Figure 3.4 and Figure 3.5.
Figure 3.4 shows that the 20%-49% imperviousness class has the largest
numbers of pixels between 1986 and 2002 in Seattle. In addition, the
largest ISA increase took place in the 20%-59% category, or low- to medium-
development densities, during that period, indicating most new urban
growth occurred as low to medium density. Figure 3.5 shows that ISA
categories from 50% to 70% comprise ~44% of all pixels between 1984 and
2002 in Las Vegas. However, the dominant fraction of ISA was in the
50%-59% class in 1984 and 60%—69% in 2002. The increase in ISA density
reflected a shift toward higher housing development density in the Las
Vegas region.
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FIGURE 3.4
Percent impervious surface and changes of ISA in different categories between 1986 and 2002 in
the Seattle area.
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FIGURE 3.5
Percent impervious surface and changes of ISA in different categories between 1984 and 2002 in
the Las Vegas Valley.

3.3.6 Accuracy of ISA Estimations

The regression tree model implemented for the large-area ISA estimation
used several parameters to measure the model’s predictive accuracy. These
included average error, which is the average of absolute difference between
model-predicted value and true value, and the correlation coefficient, which
measures the agreement between the actual values of the target attribute
and those values predicted by the model. Evaluation of the training dataset
for the 2002 Seattle ISA estimate calculated an average error of 9.9 and a
correlation coefficient of 0.88. The same parameters measured from the 2002
ISA estimate for Las Vegas were 11.2 and 0.85, respectively. Seattle results
had a higher accuracy than those of Las Vegas.

To perform accuracy assessment using true ISA data, we compared mod-
eled ISA with digital close-to-true high-resolution orthoimages for selected
locations. In each randomly selected orthoimage, one 5 X5 30 m sampling
unit was classified into urban and nonurban land use. The area classified as
urban was divided by the total area of the unit, or 900 m?, and taken as the
true fraction of imperviousness for that unit. After all selected orthoimages
were processed, comparisons were made between ISA interpreted from
orthoimages and modeled ISA. Details of this method can be found in our
previous study (Xian, 2006). Two statistics—root-mean-square error (RMSE)
and systematic error (SE)—were used to summarize differences between
modeled and true impervious surfaces. RMSE and SE are defined as
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TABLE 3.3

Percent ISA and Accuracies for Each Sample Site

Sample Site Seattle Las Vegas
Mean ISA measured from DOQQ ISA 33.8 62
Modeling ISA% from Landsat 34 57
Mean SE 0 -6.0
Mean RMSE 15.10 16.10

(3.2)

(3.3)

where
U; is the modeled ISA for sample i
U, is the true ISA data for sample i
N is the total number of samples

The values of RMSE and SE for seven and six randomly selected ortho-
images were calculated for the Seattle and Las Vegas areas, respectively.

Table 3.3 represents accuracy assessment results for two regions. The
modeled ISA for Seattle area had values of 0.0 for mean SE and 15.10 for
mean RMSE. Values of mean SE and mean RMSE were —6.0 and 16.10 for
Las Vegas. The ISA estimate in Seattle had a relatively higher accuracy than
that in Las Vegas, where ISA was slightly underestimated. The reason for
this lower estimate for Las Vegas might be caused by the region’s landscap-
ing gravel and rocks, bare alluvial soils, and the surrounding gravel in rural
areas. These materials have a similar appearance to concrete and had
brighter reflectance than some urban buildings. This might cause significant
confusion in regression tree models and produce lower imperviousness
values for the region.

3.4 Urban Land-Use Density and Percent Imperviousness

Urban development typically converts natural land into impervious sur-
faces. The urban landscape can be characterized in terms of ISA, vegetation
covered area, and others such as bare soil and water. The impervious
surface at the subpixel level can represent the spatial sizes of most dwelling
units in residential areas. Furthermore, the fraction of imperviousness in a
parcel can be used to represent the density of built-up areas in urban zones.
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By choosing thresholds of subpixel impervious surfaces to define urban
land-use boundaries and then calculate changes in built-up land, the char-
acteristics of urban extent and land-use change can be objectively quantified
for any metropolitan region. Many of the specific decisions that influence
urban development, such as built-up density, extent, and building form, are
often implemented at the development, tract, or individual parcel level. The
physical measurement of ISA from remote sensing data provides a quanti-
tative and self-consistent metric, which can avoid the considerable difficul-
ties that result from different administrative and political definitions of
urban and nonurban land use, as well as associated land-use changes for
multimunicipal areas.

The differences in impervious surface density displayed in Figures 3.4
and 3.5 suggest apparent and distinct patterns of urban development dens-
ity and temporal variations in these two metropolitan areas. In Seattle, the
predominant development densities were between 30% and 50% impervi-
ousness. However, the major development densities were higher in the Las
Vegas area, ranging between 50% and 70%. These imperviousness densities
are determined by dwelling unit densities and represent intensities of
built-up land for the area. For an area with the same size of one Landsat
30 m X 30 m pixel, which has 900 m? or 9687.5 ftz, 40% imperviousness
coverage, for instance, represents 3874.8 ft* of built-up land. For an area
zoned as 1-12 dwelling units per acre and each lot is 8100 ft* (which is
common in the Seattle region), the maximum built-up area would take
~45% (1 acre/8100/12) of each lot.

To demonstrate the percent of built-up area in each planning lot and its
possible connection to percent imperviousness, Figure 3.6 presents a high-
resolution aerial photo of a parcel on the northeastern side of Seattle, where
developments were zoned for high-density residential land use as at least
1-12 dwelling units per acre. Each lot designated for single-family housing
is 8100 ft*. Most housing units and associated sidewalks consumed about
40%-50% of each lot. As a result, the total built-up land in this section was
estimated as <50% as interpreted from the photography. In addition, the
2002 impervious surface map obtained from Landsat imagery was precisely
subset for this section and mean imperviousness was calculated as 42.6%,
which was very close to the estimate from zoning information. Housing
units shown in the photography represented a medium density of ISA
category in the region.

Local growth management also zoned urban areas with different density
developments for the Seattle area (Robinson et al., 2005). In King County,
for example, besides high-density residential areas zoned for urban area,
there were rural areas zoned for low-density residential area as 1 dwelling
unit per 2.5-10 acres. New developments were prioritized to increase hous-
ing density within UGBs and to limit housing densities outside these
boundaries. Data showed that land committed to construction of residential
housing ranged from 72% to 85% in the 1985-1994 and 1999-2001 periods,
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FIGURE 3.6
Aerial photography from Seattle urban area. The lots on the patch are outlined by white lines.
The mean ISA value of the patch is 42.6%.

respectively (Robinson et al., 2005). Seattle’s growth management strategy
resulted in widespread, low-density single-family residential development
outside the UGBs in the region. The change pattern measured from the
subpixel ISA estimate also indicated that the maximum increase was in
the 30%—40% ISA category from 1986 to 2002. This increase was believed
to correspond to the land-use trend resulting from growth management of
the region.

Las Vegas urban land use was highly restricted by local geographic con-
ditions where most lands suitable for urban development were located in the
valley. Urban planning was implemented through the comprehensive plan
that divided the county into zoning districts, including rural residential,
suburban and compact residential, multiple-family residential, commercial,
manufacturing and industrial, and special districts (Clark County, 2006).
Within the suburban and compact single-family residential district, the
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FIGURE 3.7
Aerial photos from Las Vegas urban area. Left: Older housing built in the 1980s. Right: New
developments built in the 2000s. Mean ISA values for left and right are 57.7% and 61.5%,
respectively.

development densities were designated as 5 dwelling units per acre with lot
area of 5200 ft*, 8 dwelling units per acre with lot area of 3300 ft?, and 14
dwelling units per acre with lot area of 2000 ft*. This development policy
determined that urban area development density in Las Vegas was higher
than that in Seattle.

The spatial distribution and temporal change patterns of estimated sub-
pixel ISA in Figure 3.5 suggest that imperviousness categories of 50%-59%
in 1984 and 60%—69% in 2002 contain the largest parts of the region. The
increase in ISA category during this period resulted in a higher modeled
built-up density in 2002. To illustrate features of urban development density
in the area, two aerial photos from the central and southeast sectors of the
Las Vegas metropolitan area are displayed in Figure 3.7. Photos of two
residential areas show two types of housing buildings in the 1980s (left)
and 2000s (right). Calculation from mapped ISA indicated that the 1980s
housing sector had a mean imperviousness of 57.7%. The mean impervi-
ousness for the 2000s built-up sector increased to 61.6%. The percent imper-
viousness estimated from Landsat TM and ETM+ imagery quantitatively
revealed both the extent of urban development and its temporal transition
patterns, which were affected by local and regional growth management.

3.5 Discussion

The spatial extents, density distributions, and temporal variations of sub-
pixel percent impervious surface estimates from remote sensing and
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slope information revealed several important characteristics of urban land
use and growth in two metropolitan areas.

The imperviousness mapping depicted a clear link between urban devel-
opment policy and real land-use patterns. Developments in the Seattle area
have been designated for low-density residential development in rural and
wildland areas outside of UGBs while keeping high-density housing growth
within UGBs. In Puget Sound between 1990 and 2000, 55% of new growth—
about 253,000 new residents—settled in low-density areas with fewer than
12 people per acre (Davis and Schaub, 2005). This zoning policy has resulted
in widespread, low-density single-home residential developments in the
region. Associated with this land-use pattern were predominantly low- to
medium-density impervious surfaces distributed in the region. The ISA
temporal change pattern, in which the percentage of low-density ISA
increased from 47.4% to 49.5% from 1986 to 2002, represented the charac-
teristics of urban land use and reflected the implementation of the growth
policy in the region.

The ISA mapping for the Las Vegas Valley reflected a high-density deve-
lopment policy in the region. In 1984, the largest proportion (40.6%) of ISA
was in the medium-density category. However, in 2002, the largest
ISA category (43.5%) was in the high-density category. The encouragement
of high-density development led to a dominant high-density category of
imperviousness in the region.

The impervious surface metric, which relies on satellite imagery, provides
a uniform data source, which is unchanged across political jurisdictions.
The method and concept are useful for regional scale analyses and should
be applicable to other forms of urban landscape delineation, such as indi-
vidual developments and neighborhoods. Planners could monitor the phy-
sical manifestations of planning policies within cities by integrating
quantitative analysis of remote sensing data with zoning information. In
addition, urban land-use conditions derived from ISA status can be verified
without accessing local administrative data, which may not be available for
many analyses. This advantage is very important when implementing a
multicity or a regional analysis, which usually involves different city- or
county-level administrations and when data availability and reliability are
major concerns.

Building an optimistic regression tree model is very important for accu-
rately estimating impervious surfaces in large areas. A large effort was
needed for the development of good training data from high-resolution
imagery. Appropriate numbers of high-resolution images that represent
major features of urban land use in the study area are needed. Another
important procedure is to select independent variables to construct a good
regression tree model. Currently, spectral reflectance and several ancillary
data are used as independent variables to build the model. Other data such
as the socioeconomic information including population data may also be
valuable for a better regression tree model.
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3.6 Conclusion

The characteristics of urban land use are highly influenced by local geographic
conditions, social and economic forces, and land management policies.
Policies that encourage levels of development density within urban or rural
areas have clear implications for the urban ecosystem. This study demon-
strates that subpixel impervious surfaces estimated from satellite remote
sensing data and regression tree models provide a regionally consistent
and reliable source to assess the size, spatial distribution, and temporal
change of urban land use. Quantitative analysis of ISA distributions for two
geographically distinct areas reveals that subpixel impervious surfaces are
closely related to urban land-use patterns and variation trends. Urban extent
in the Seattle area had a moderate growth rate of 56% from 1986 to 2002. In the
Las Vegas Valley, the growth rate was much faster and reached 113% from
1984 to 2002. Subpixel ISA values derived from satellite data captured distinct
patterns of development density for these areas, in which two different deve-
lopment policies have been implemented. Variations quantified from subpixel
impervious surfaces also revealed urban development patterns that have been
influenced by different public policies in these two metropolitan regions.
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4.1 Introduction

Research on impervious surface extraction from remotely sensed data has
attracted interest since the 1970s. During the 1970s and 1980s, much research
on impervious surface extraction was based on aerial photographs [1,2]. In
the past decades, research was shifted to develop more advanced
approaches for quantitative impervious surface extraction from satellite
images. The approaches include per-pixel image classification [3-5], sub-
pixel classification [6-9], and decision tree modeling [10-13]. Extractions of
impervious surface have also been conducted by the combination of high-
albedo and low-albedo fraction images [14-16] and by establishing the
relationship between impervious surfaces and vegetation cover [17,18].
Because of the complexity of impervious surface materials and the spectral
confusion between impervious surfaces and other land covers, extraction of
impervious surface from remotely sensed data is still a challenge. The object-
ive of this research is to extract impervious surface from Landsat ETM+
image through the integration of land surface temperature (LST) and fraction

59
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images. Specifically, the combination of the LST and low-albedo fraction is
used to extract the dark impervious surface contents existing in the low-
albedo fraction images. Another objective is to explore the approach to
extract impervious surface areas from IKONOS data, through the use of a
hybrid approach based on the combination of decision tree classifier (DTC)
and unsupervised classification to extract the dark impervious surface and
other shadowed impervious surface areas.

4.2 Study Area and Dataset

Marion County/the City of Indianapolis, Indiana, United States, is chosen as
the study area (Figure 4.1). Indianapolis, the state capital, is a key center for
manufacturing, warehousing, distribution, and transportation in the state.
Indianapolis has almost 800,000 population, and the city is the nation’s
12th largest one. It possesses several other advantages that make it an
appropriate choice for this study. It has a single central city and other large
urban areas in the vicinity have not influenced its growth. The city is located
in a flat plain and is relatively symmetrical, with possibilities of expansion
in all directions. Like most American cities, Indianapolis is increasing in
both population and extent. The areal expansion is through encroachment
into the adjacent agricultural and nonurban land. Certain decision-making
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FIGURE 4.1
The study area—Marion County, Indiana State, United States.
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forces such as density of population, distance to work, property value, and
income structure encourage some sectors of the metropolitan Indianapolis
to expand faster than others.

A Landsat 7 ETM+ image (path 21/row 32) of Marion County, Indiana,
which was acquired on June 22, 2000 under clear weather conditions, was
used in this research. The ETM+ image has one panchromatic band with
15 m spatial resolution, six reflective bands with 30 m spatial resolution, and
one thermal infrared band with 60 m spatial resolution. The ETM+ data
were geometrically rectified with 1:24,000 topographic maps. The root-
mean-square error (RMSE) during image rectification was <0.2 pixels.
A nearest-neighbor algorithm was used to resample the ETM+ image
(including the six reflective bands and the thermal infrared band) to a
pixel size of 30 m X 30 m during image rectification. The ETM+- reflective
bands were used to develop fraction images with SMA, and the thermal
infrared band was used to compute LST. The ETM+ panchromatic band
was not used for the research. No atmospheric calibration was conducted
for the ETM+ image, because previous research had demonstrated that
atmospheric calibration did not have an effect on fraction images when
image endmembers were used [19].

Orthophotographs were used in this research for validation of impervious
surface estimation results. The color orthophotographs were provided by
the Indianapolis Mapping and Geographic Infrastructure System, which
was acquired in April 2003 for the entire Marion County. The orthophoto-
graphs have a spatial resolution of 0.5 ft (i.e., 0.14 m). The coordinate system
belongs to Indiana State Plane East, Zone 1301, with North American Datum
of 1983. The orthophotographs were reprojected and resampled to 1 m pixel
size for the sake of quicker display and shorter computing time.

In order to explore the extraction of impervious surface using IKONOS
data, a typical urban study area in Indianapolis, Indiana, was selected.
Different urban land uses, such as commercial areas, different intensities
of residential areas, forest, grass, and rivers can be found in this study area.
It is an ideal area for research on extraction of urban impervious surface
areas. The IKONOS images were acquired on October 6, 2003 in a cloud-free
condition. The IKONOS images have four bands in blue, green, red, and
near-infrared wavelengths with 4 m spatial resolution and they have one
panchromatic band with 1 m spatial resolution. The 4 m IKONOS multi-
spectral image was used in this research.

4.3 Mapping of Impervious Surface with Landsat ETM+ Data

Spectral mixture analysis (SMA) is regarded as a physically based image-
processing tool, which supports repeatable and accurate extraction of quan-
titative subpixel information [20]. The SMA approach assumes that the
spectrum measured by a sensor is a linear combination of the spectra of
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all components (endmembers) within the pixel and the spectral proportions
of the endmembers represent proportions of the area covered by distinct
features on the ground [20,21]. The mathematical model of SMA can be
expressed as

n
Ri=>_ fu Ri+eu, (4.1)
=1

where
i=1,..., m (number of spectral bands)
k=1,..., n (number of endmembers)
I =1,..., p (humber of pixels)
Rj; is the spectral reflectance of band i of a pixel, which contains one or
more endmembers
fi is the proportion of endmember k within the pixel
Rix is known as the spectral reflectance of endmember k within the pixel
on band i
& is the error for band 7 in pixel [

For a constrained unmixing solution, f;; is subject to the following
restrictions:

> fu=1land 0<fy<1, (4.2)
k=1

One critical step in the SMA approach is to select suitable endmembers. In
practice, image-based endmember selection approaches are often used,
because image endmembers can be easily obtained and they represent the
spectra measured at the same scale as the image data. Image endmembers
can be derived from the extremes of the image feature space, assuming that
they represent the purest pixels in the images [22]. In this research, image
endmembers were selected from the feature spaces of minimum noise
fraction (MNF) components. The MNF transform approach was applied to
transform the ETM+ six reflective bands into a new dataset (Figure 4.2). The
first three components account for the majority of the information (~99%)
and were used for assisting the selection of four endmembers: vegetation,
high albedo, low albedo, and soil (Figure 4.3). A constrained least-square
solution was then used to unmix the six ETM+- reflective bands into the four
fraction images (Figure 4.4). The high-albedo fraction image mainly reflects
the bright impervious surfaces in the urban landscape. The low-albedo
fraction image is more complex than other fraction images because it con-
tains different objects, such as water, building shadows in the urban land-
scape, vegetation canopy shadows in forested areas, and dark impervious
surfaces. The soil fraction image reflects the soil contents, which is mainly
located in the agricultural areas. The vegetation fraction image represents
the vegetation information from forest, pasture, grass, and crops. The frac-
tion images indicate that the impervious surfaces are concentrated on



Mapping Urban Impervious Surfaces 63

FIGURE 4.2
Four components derived from a minimum noise fraction transformation of Landsat ETM+ image.
(From Lu, D. and Weng, Q., Remote Sensing Environ., 102, 146, 2006. With permission.)

the high- and low-albedo fraction images. It is important to remove the
nonimpervious surfaces from both high- and low-albedo fraction images to
accurately extract the impervious surfaces.

LST was developed from the Landsat ETM+ thermal band, and the
approach for LST extraction was described in our previous work [23]. The
temperature is gradually decreased from the highest values in commercial
areas, to medium values in high- and medium-intensity residential areas, to
the lowest values in nonurban areas such as in forested lands and water
(Figure 4.5). The cooling effects from water and forests can effectively
reduce the temperature, whereas large impervious surface proportions in
urban areas have the heating effects resulting in urban heat island effects.
The different LST features between impervious surface and other land
covers provide the fundamental basis for the distinction of impervious
surface from other land covers. In order to remove nonimpervious surfaces
(i.e., water, forest, pasture, grass, and crops) from low-albedo and high-
albedo fraction images, it is necessary to develop some criteria, such as
“If LST <t, this pixel in low-albedo or high-albedo fraction images is
assigned to 0 because it is water or vegetation (such as forest, crops),
otherwise, keep the value in low-albedo or high-albedo fraction.” The
threshold ¢ can be identified based on the reference data of water and
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FIGURE 4.3

Feature spaces between the MNF components, illustrating potential endmembers of Landsat
ETM+ image. (From Lu, D. and Weng, Q., Remote Sensing Environ., 102, 146, 2006. With
permission from Elsevier.)

vegetation. After nonimpervious surfaces were removed from the low-
albedo and high-albedo fraction images, the impervious surface image
was then derived based on the addition of the adjusted low-albedo and
high-albedo fraction images (Figure 4.6). It indicated that the gradient
impervious surface change is obvious, from highest in commercial areas in
the center of this study area, to medium in the high-intensity residential
areas, to the lowest in the low-intensity residential areas.

In order to compare the result obtained in this research with previous
work, the same accuracy assessment approach was used here [15], that is,
the RMSE and system error (SE).

RMSE = % ;: (Ve — v;)%, (4.3)
SE = 1 i (ve - vr)/ (4.4)
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FIGURE 4.4

65

Four fraction images from spectral mixture analysis of six ETM+- reflective bands (the fraction
values range from 0 to 1, with the lowest values in black and the highest values in white in the
fraction images) (A: High albedo; B: Low albedo; C: Soil; and D: Vegetation). (From Lu, D. and
Weng, Q., Remote Sensing Environ., 102, 146, 2006. With permission from Elsevier.)

FIGURE 4.5

Land surface temperature
derived from Landsat ETM+
thermal band (A: Commercial
areas; B: High-intensity resi-
dential areas; C: Medium-
intensity residential areas; D:
Agricultural lands; E: Forested
lands; and F: Water). (From Lu,
D.and Weng, Q., Remote Sensing
Environ., 102, 146, 2006. With
permission from Elsevier.)
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FIGURE 4.6

Impervious surface image
developed from ETM+ data
based on the combination of
land surface temperature and
fraction images.

where
n is the number of samples
Ve and V, are estimated values from the sample plot on ETM+-derived
impervious surface image and the reference values from digitizing
impervious surface polygons on the same sample plot of the orthopho-
tographs.

A total of 76 samples with 3 X 3 pixel size (90 m X 90 m in ETM+ data) were
designed and digitized on the orthophotographs. Because of the 3-year
difference between ETM+ data and orthophotographs, a careful examin-
ation of each sample plot between ETM+- color composite and orthophoto-
graphs found that seven sample plots have obvious changes and thus they
were removed from the accuracy assessment. Thus, 69 samples were used
for assessment of impervious surface estimation image. Based on the 69 sam-
ples, the overall RMSE with 9.22% and SE with 5.68% were obtained. When
impervious surface is <30%, the RMSE becomes 9.98% and SE becomes
8.59%, but when impervious surface is >30%, RMSE is 8.36% and SE
is 2.77%. This result has been much improved compared with previous
research [15].

4.4 Mapping of Impervious Surface with IKONOS Data

Different colors or kinds of impervious surfaces have their specific reflect-
ance values. Based on spectral features, impervious surfaces can be grouped
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as low- and high-reflectivity impervious surface (LRIS and HRIS). LRIS is
defined here as dark impervious objects with low reflectance, especially in
visible and near-infrared bands, thus LRIS objects appeared as dark gray or
black in IKONOS color composite. HRIS is defined here as the impervious
objects with high reflectance, thus they appeared white in the composite.
HRIS usually has significantly different spectral features when compared
with other land covers. Thus, it can be easily extracted. The challenge is to
extract LRIS from other land covers because the LRIS, such as some dark
building roofs and roads, has similar spectral features with water bodies
and shadows cast by buildings or tree canopy. Previous research has shown
the difficulty in separating them based on spectral signatures with tradi-
tional classification approaches such as maximum likelihood classifier
(MLC) [24,25].

Classification approaches, such as MLC [26] and DTC [11,27], are often
used to extract impervious surface areas. The MLC is a parametric classi-
fier, which assumes normal distribution for each feature of interest, asso-
ciated with an equal prior probability among the classes. Hence, training
samples that have insufficient or nonrepresentative features of interest or
with multimode distributions often lead to poor classification results
because of inaccurate estimation of the mean vector and the covariance
matrix used in the MLC algorithm. In urban landscapes, the assumption of
normal distribution was often violated and the selection of training sample
plots was often difficult because of the complex urban environments.
Much previous research has indicated that nonparametric classifiers pro-
vide better classification results than parametric classifiers in complex
landscapes [28]. The nonparametric classifiers, such as DTC and neural
network, have attracted increased attention in urban land-cover classifi-
cation. Hence, the DTC is used in this research for extraction of impervi-
ous surface areas. Many previous works have detailed the description
of DTC [11,29,30].

The strategy for extraction of impervious surface areas is illustrated in
Figure 4.7. A DTC is used to classify the IKONOS spectral signatures into
two reflectance levels of impervious surface areas, and the confusion
between some water bodies and shadows cast by tall buildings is further
analyzed with an unsupervised ISODATA approach. Vegetation is first
separated from nonvegetation types based on NDVI, and HRIS from others
based on the visible bands. The confused pixels (some dark impervious
surface, shadows from tall buildings, and water) are masked out and
classified using unsupervised ISODATA. The clusters are then merged
into water or shadowed impervious surfaces based on the analysis of
overlaying the classified image on a color composite. Finally, LRIS, HRIS,
and shadowed impervious surface are recoded as impervious surface class
(Figure 4.8).

Accuracy assessment is an important part in image classification. Differ-
ent elements for accuracy assessment, such as overall accuracy and produ-
cer’s and user’s accuracy, can be used and they can be calculated from an
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IKONOS multispectral image .
Extraction of IKONOS data
for confused class
NDVI> t1 Y Vegetation
N Unsupervised classification
with ISODATA
(b1+b2+b3)>1t2 HRIS
N Overlay the classified image over
Y IKONOS bands 432 (as R, G, B)
ba>13 LRIS color composite and then manually
N separate water and shadows
(b3 - ba) < t4 Confused class with
and (b1/b2) > 15 shadows and water Water Shadows
v N N
NDVI<t6 Y
Shadows and b2>t7
Water Recode classified classes as following:
impervious surface, water, and vegetation
Note: b1, b2, b3, and b4 represent IKONOS bands 1, 2, 3, and 4; NDVI is the normalized
difference of vegetation index; HRIS and LRIS are high- and low-reflectivity impervious
surfaces; t1, ..., t7 are thresholds developed from training samples
FIGURE 4.7

Strategy of impervious surface extraction based on a combination of decision tree classifier and
unsupervised classification on IKONOS spectral signatures.

FIGURE 4.8

Extraction of impervious surfaces from IKO-
NOS data with a hybrid approach based on a
combination of decision tree classifier and
unsupervised classification.
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Impervious surface
Vegetation
Water
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TABLE 4.1

Comparison of Different Approaches for Extracting Impervious Surface Areas

Method Type ISA WAT VEG PA% UA% 0A%
MLC ISA 77 2 3 93.9 89.5 89.3
WAT 13 100.0 76.5
VEG 9 2 44 80.0 93.6
DTC ISA 83 1 2 9.5 9.5 9.0
WAT 16 100 94.1
VEG 3 45 93.8 95.7

Note: ISA, WAT, and VEG represent impervious surface area, open water bodies, and
vegetation, including forest and associated tree crown shadows, and grass; PA, UA, and OA
represent producers’ accuracy, user’s accuracy, and overall classification accuracy; MLC and
DTC represent maximum likelihood classifier and decision tree classifier.

error matrix. Many previous literatures have detailed the approaches for
accuracy assessment [31-33]. In this study, a total of 150 sample plots were
randomly selected for accuracy assessment. The land-cover class for each
sample plot was visually interpreted on the color composite of IKONOS
bands 4, 3, and 2. An error matrix was then developed for each classifier,
that is, MLC and DTC. Finally, producer’s and user’s accuracy for each class
and overall accuracy for each classifier were calculated based on the error
matrix (Table 4.1). In urban environments, the land-use/cover classification
with a traditional per-pixel classifier such as MLC is a challenge, even using
high spatial resolution images such as IKONOS data. Use of nonparametric
classifier—DTC improved classification accuracy. In the MLC approach,
some dark impervious surface or shadows cast by tall buildings in the
impervious surface areas were confused with water or with shadows cast
by tree crowns in the vegetation areas. In the DTC approach, this confusion
was significantly reduced. Both producer’s and user’s accuracies for DTC
approach were 96.5%, compared with 93.9% and 89.5% for MLC. This
research indicated that selection of a suitable classification approach was
important for producing accurate classification results.

4.5 Discussions

This research showed that impervious surface was overestimated in the
less-developed areas, but was underestimated in the well-developed areas.
This situation is the same as previous research [15]. In the less-developed
areas, such as medium- and low-intensity residential lands, impervious
surfaces are often mixed with vegetation and soil. However, bright imper-
vious surface objects have higher reflectance values than vegetation, espe-
cially in the visible and shortwave infrared bands, exaggerating their area
proportions in the mixed pixels. Another factor is that dark impervious
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surface objects and water or shadows have similar spectral characteristics
and similar values in the low-albedo fraction image. Dark impervious
surfaces from the low-albedo fraction image may be overextracted because
the extraction is solely based on the difference in LST. The relatively low
spatial resolution of Landsat ETM+ thermal band smooths boundaries
between impervious surfaces and other cover types. In the well-developed
areas, such as high-intensity residential lands, similar spectral responses
in some bright impervious surfaces and dry soils created confusion.
Tree crowns that cover portions of some impervious surfaces, such as
roads, may be another factor causing underestimation of impervious sur-
faces. This problem is much improved in high spatial resolution IKONOS
image because of less influence from the mixing pixel. However, many
impervious surface areas may be in the shadows caused by tall buildings
and large tree crowns. The shadow problem that occurred in the high spatial
resolution image is a challenge in impervious surface extraction. To date,
there is lack of an effective approach to remove the shadow impacts. The
shadow problem also affects the extraction of impervious surface areas. In
medium spatial resolution images, such as Landsat TM/ETM+, or Terra
ASTER, use of a thermal band is an effective way of separating dark
impervious surface from water, or shadows on impervious surface areas
from the shadows on vegetated area because of the different LSTs [16].
However, high spatial resolution images often lack thermal bands and
have limited spectral bands. This research used an unsupervised classifica-
tion to separate the dark impervious surface, water, and shadows because
an analyst can effectively use his knowledge in the study area during
merging the clusters into meaningful classes and can use different features,
such as textures and patterns of land-use distributions, inherent in the high
spatial resolution images.

The importance of thermal image in assisting impervious surface extrac-
tion has not attracted sufficient attention yet. One limitation of the thermal
image is its relatively low spatial resolution. For example, the spatial reso-
lution of thermal image is 120 m in TM and 60 m in ETM+ data, whereas
their reflective images are 30 m. The low spatial resolution image contains
much mixed information, which cannot provide a clear boundary of the
temperature differences between impervious surface and other land covers.

Selection of a suitable image acquisition date is also important for extrac-
tion of impervious surface. We had explored to extract impervious surface
areas in different seasons using ASTER images acquired in October 2000,
June 2001, March 2002, and ETM+ images acquired in June 2000 and
April 2003 (unpublished results). We found that the images acquired in
vegetation-growing seasons are suitable for impervious surface extraction,
but the images acquired in spring or maybe in winter seasons are not. In the
vegetation-growing season, vegetation and crops in agricultural areas have
significantly different spectral features with impervious surfaces, whereas
in other seasons, the nonphotosynthetic vegetation (such as branches and
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stems after leaves fall down) and bare soils (in agricultural areas) are
confused with impervious surfaces.

The spatial and spectral resolutions of remote sensing data are important
factors affecting the selection of approaches for extraction of impervious
surface. We had explored urban land-use/cover classification based on
Landsat TM/ETM+ and Terra ASTER images with different classification
methods and different image-processing procedures and found that
urban land-use/cover classification is very difficult because of the complex
urban landscape resulting in large numbers of mixed pixels. The distinction
between commercial/industrial lands and high-intensity residential areas,
between low-intensity residential areas and forests, and between dark
imperious objects and water or shadows is especially difficult [24,25]. In
this case, an SMA-based approach is more suitable for urban land-use/cover
classification or extraction of impervious surfaces. For high spatial reso-
lution images such as IKONOS, the use of classification approaches such
as the DTC used in this research can successfully extract impervious surface
areas with high accuracy. Due to high spatial resolution, the mixed pixel
problem is not an important factor affecting classification accuracy. How-
ever, the high spectral variation within the same land-cover class may be the
major factor. Thus, the use of textures in the image classification procedure
or object-oriented classification approach is helpful in improving high spa-
tial resolution image classification performance.

4.6 Conclusions

The important role of impervious surface images in urban-related studies
has been recognized. However, impervious surface extraction from
remotely sensed data is still a challenge. The integration of LST- and SMA-
derived fraction images used in this paper has shown promise in improving
the quality of mapping impervious surface distribution. Compared with
previous research, this study has shown much improvement in map-
ping impervious surface distributions. The overall RMSE of 9.22% and SE
of 5.68% were obtained in this research. In particular, the impervious
surface in well-developed areas can be better estimated than that in less-
developed areas.

High spatial resolution images such as IKONOS are important data
sources for the extraction of urban impervious surface areas, which can be
used as reference data for validation of the results developed from medium
or coarse spatial resolution data. One critical step is to extract the dark
impervious surface areas, which are often confused with water and
shadows. A hybrid approach based on DTC and unsupervised ISODATA
classifier can effectively extract the impervious surface areas, which provide
significantly better results than MLC.
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5.1 Introduction

Impervious surface is defined as any impenetrable material that prevents
infiltration of water into the soil. Urban pavements, such as rooftops,
roads, sidewalks, parking lots, driveways, and other man-made concrete
surfaces, are among impervious surface types that feature the urban and
suburban landscape. Impervious surface has been identified as a key
environmental indicator due to its impacts on water systems and its role
in transportation and concentration of pollutants [1]. Urban runoff, mostly
through impervious surface, is the leading source of pollution in a
nation’s estuaries, lakes, and rivers [1,2]. A watershed-planning model
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predicted that most stream-quality indicators would decline when imper-
vious surface areas (ISA) in a watershed exceeded 10% [3]. ISA have
been recognized as an indicator of the intensity of urban environment.
With the advent of urban sprawl, ISA have been identified as a key
factor affecting the health of habit [4]. Quantification of the percentage
and derivation of spatial distribution of ISA in landscapes have become
increasingly important with the growing concern over water quality in this
country [5-8].

Extraction of ISA from remotely sensed data has been challenging
because of the nature of spectral mixing within pixel data from different
sensors. In suburban areas, ISA are always mixed with tree canopies and
other types of land cover at Landsat data level. Although high spatial
resolution data are readily available, the volumes and costs of data
prohibit their extensive usage for large areas. Therefore, modeling
approaches that can integrate high spatial resolution remote sensing
data with Landsat data for extraction of subpixel proportions of ISA are
in demand. On the other hand, high spatial resolution true-color ortho-
photo data are becoming popular and available in planning agencies and
different user groups. Although conventional pixel-based methods can be
used for classification of high spatial resolution data, their shortcomings
are evident. The most noticeable is that spectral classifications will pro-
duce dramatic salt-and-pepper effects due to increased spatial resolution
and level of classification complexity. In addition spatial information,
such as neighborhood, proximity, and homogeneity, cannot be used
sufficiently in these methods [9]. Therefore, effective approaches that
can extract precise ISA information from digital orthophoto data are
in demand.

In this chapter, we introduce two tested models to extract ISA informa-
tion from different types of remote sensing data. The subpixel proportional
land-cover information transformation (SPLIT) model can be used to
extract proportions of ISA with Landsat TM data as a base and high spatial
resolution airborne digital multispectral videography data as a subpixel
information provider [8]. With established relationship through training
samples, the SPLIT model can be extrapolated to areas beyond the cover-
age of finer spatial resolution data. It enables effective and efficient
use of limited coverage of high spatial resolution remote sensing data to
extended areas in extraction of proportions of ISA through Landsat data.
The modeling mechanism of SPLIT allows other types of high spatial
resolution sensor data to be used as subpixel information providers
as well. Multiple agent segmentation and classification (MASC) is an
object-oriented modeling that can be used to extract ISA from fine spatial
resolution true-color digital orthophoto data. It facilitates precise ISA map-
ping for purposes of planning and resource management. The two
models present different perspectives in ISA extraction with multiple
remote sensing data options.
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5.2 Methods
5.2.1 SPLIT Model

The architecture of the SPLIT model includes a modular artificial neural
network (MANN) and a control unit. MANN is a global artificial
neural network (ANN), which consists of a group of simple-structured
sub-ANNs or subnets (Figure 5.1). MANN decomposes a complex task
into multiple subtasks through the use of subnets. The subnets are assigned
to learn different patterns or proportions of ISA through the control unit.
The number of subnets is the same as the number of output-processing
elements in an ANN. The control unit is designed to perform multiple
functions including task assignment, inverse simulation of spectral features,
and classification decisions.

MANN output layer

Subnet 1
Subnet n
Control
unit
] ] Pure-pixel
Mixed-pixel subnetwork
subnetworks
MANN input layer
Control unit
At training: input
Mixed or IEEN%?S TM and subpixels
pure pixel
subnets
RMS between ) .
reverse simulated During operation:
and input pixels input TM pixels

Reversed simulation
of pixel values

Subpixel proportions Supporting library

FIGURE 5.1
The SPLIT model consists of a modularized artificial neural network and a control unit. (From
Wang, Y. and Zhang, X., Photogramm. Eng. Remote Sensing, 70, 821, 2004. With permission.)
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The control unit includes a gate network and a supporting library, which
records ANN parameters and training patterns. During ANN training,
the control unit and supporting library learn patterns of land-cover com-
positions, proportions of ISA, and corresponding spectral features of TM
pixels and the corresponding finer spatial resolution subpixel values.
Once trained, the control unit will be able to screen input data and sub-
pixel patterns, dissect and distribute input to suitable subnets for pattern
recognition. This design allows complex cases of subpixel patterns to be
decomposed and effectively handled.

Let L be the number of output-processing elements of the control unit,
which is the same as the number of subnets, N the number of MANN
output, which represents the level of proportions of ISA, vi= k1, ..., Yin)
the activation vector of the kth subnet output layer, y=(y1,..., yn) the
MANN output, and c=(cy,..., cy) the activation vector of the output of
the control unit. The output of the /th subnet is adjusted by c;:

L
y=>_ay. (5.1)
=1

MANN is trained by updating the weights connecting each of the process-
ing elements. Updating of weights is derived by maximizing the objective
function:

L
=1

whered =(d,, ..., dy)is a desired output vector for the MANN. The quantity
of hy is used to describe learning equations:

—0.5(d—yx)" (d—yx)
Iy = . (5.3)
> Cle—O.S(d—y,)T(d—y,)
=1

Standard back-propagation attempts to minimize a global error function E by

OE_ OBy _ ;%
T ayor @ Vor G4

where Iy =(Ijq, ..., Iin) represents the preactivation vector of the kth subnet
output layer, and a standard quadratic error function is assumed. The
corresponding values to back-propagation include [10].

e Back-propagate error for the kth subnet:

o o ye

9= "y o, = Ay (5.5)
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» Back-propagate error for the kth output-processing element of the
control unit:

<~ 9] O < h > Ty )
— = = ——CC |+ —(ck—¢C
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L
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17k =1

Equation 5.5 and Equation 5.6 indicate that the error at each subnet is
weighted by its control unit.

In the training stage, processing elements in the input layer accept multi-
spectral TM data and the corresponding subpixel values from training
samples. Patterns of mixed land-cover compositions, proportions of ISA,
and corresponding characteristics of spectral features between the two
datasets are recognized. The output layer of MANN represents propor-
tions of ISA in TM pixels, which are defined by subpixel patterns. In
model operation, input-processing elements accept TM data as input data.
The control unit evaluates spectral patterns of the input and determines
which subnet or a group of subnets should be assigned to handle the input
data. For example, if a TM pixel contains a mixture of two land-cover
types, one subnet that was trained to handle this composition would be
assigned to process the input data. If three or more land-cover types
mixed in one TM pixel, the subnet that was trained to handle the
likely composition would be assigned to extract land-cover proportions of
the composition. Besides, the supporting library would record spectral
relations and similarities among land-cover compositions. Therefore, closely
related and confusing compositions can be better identified.

A pixel is considered “pure” if there is a dominant land-cover type that
counts for over 80% of the TM pixel area as determined by the correspon-
ding subpixel information. A pure-pixel subnet (Figure 5.1) handles the
pixels that have close to homogeneous subpixel spectral features. The num-
ber of subnets depends on the number of considered compositions of mixed
land-cover types and that can be calculated [8].

After initial extraction of subpixel proportions, the control unit performs an
inverse transformation from the proportion domain to the spectral domain.
The control unit supports the inverse simulation (Figure 5.1). The inverse
transformation simulates spectral features of the TM pixel based on obtained
proportions of given land-cover composition and on spatial aggregation
pattern of subpixels. The purpose of inverse transformation is to examine
the degree of similarity between the original spectral feature of the TM pixel
and the simulated spectral feature from proportions of land-cover by the
subpixel information provider. The most likely composition and proportion
of land-cover types are determined by the root-mean-squared (RMS) error
derived from inverse transformation.



82 Remote Sensing of Impervious Surfaces

(b — bi)*
RMS = N 5.7)
where
N is the number of output-processing elements in an inverse subnet
b; is the spectral value of the ith spectral band derived by the inverse
simulation from the extracted proportions and land-cover combina-
tions from pixels of the subpixel information provider
b; is the pixel value observed from TM data

RMS is a measure of closeness between simulated spectral features and the
spectral value of the TM pixels. If RMS error is greater than a threshold,
the control unit will make an adjustment and reassign the job to another
subnet that has the most relevant land-cover composition for a new
round of proportion extraction. Thresholds come from selected training
samples in which the proportions of land-cover types are known. The pro-
portion extraction is accepted if the RMS error is lower than the threshold.
If there is no subnet that can achieve RMS lower than the threshold, the output
of the subnet that has the lowest RMS will be saved.

Digital multispectral videography data have four spectral bands that are
identical to the spectral coverage of the first four bands of TM sensors. The
spatial relationship between videography and TM data determines that 225
videography pixels (15 X 15) cover the same ground area as one TM pixel.
The videography data in this study were acquired on October 10, 1997 for
four selected sites in DuPage and Cook counties in the west suburb of
Chicago. The landscape of the county is dominated by urban and suburban
settings. As a Landsat TM scene (Path 023/Row 031) on the same day of
videography data acquisition was available, the almost simultaneous data
acquisition and identical spectral bandwidth between the two sensor sys-
tems made the videography data an ideal source of subpixel spectral infor-
mation provider to team up with TM data (Figure 5.2). However as the
videography data were available only for four selected sites, an extrapola-
tion process was necessary to obtain proportional ISA information for the
area beyond videography data coverage by the SPLIT model.

We geometrically rectified and georeferenced videography data based on
the Landsat TM data. The registration error (RMS) between the two datasets
was 0.0043 of a TM pixel, which was about one pixel of videography data. In
order to differentiate subpixel ISA from other land-cover types, we con-
ducted initial classifications on both TM and videography data to identify
patterns of subpixel proportions and to establish spectral relations between
the two datasets. We classified the videography and TM data into six general
land-cover categories including impervious surface, deciduous trees, coni-
ferous trees, agricultural land /grassland, wetland /water, and urban grass.

We conducted GPS-guided ground verification and recorded proportions
of different land-cover types in selected sampling sites. The obtained
ground-referencing locations served as references for selection of training
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FIGURE 5.2
The study area and locations within the DuPage county where digital videography data were
available (a, b) and an example of digital videography data (c).

data between videography and TM pixels. The locations of initial candidate
training samples were selected from classified TM and videography data
based on their land-cover types (Figure 5.3). It is necessary to point out that
the purpose of initial classifications was to provide background data to
facilitate training data selection. The real training data came from selected
TM pixels and the corresponding subpixels, which established the spectral
relations between TM and the corresponding videography data. We applied
five generalized proportion intervals, that is, 0%—20%, 21%—40%, 41%—60%,
61%-80%, and 81%—-100%, for extraction of proportional ISA.

5.2.2 MASC Model

The MASC model consists of four submodels including segmentation, shadow
effect, MANOV A-based classification, and postclassification (Figure 5.4). The
segmentation submodel employs a parameter of heterogeneity change for
merging regions (Figure 5.4a). We introduced shape information in the seg-
mentation submodel to enhance the performance of ISA extraction. The
shadow-effect submodel uses a split-and-merge process to separate shadows
and objects that cause shadows (Figure 5.4b). The classification submodel
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FIGURE 5.3
Locations of training samples (small squares) and examples of pure and mixed subpixel
information within TM pixels.

uses a MANOV A-based classifier so that the variability within the object and
the relationship between spectral bands can be taken into account (Figure 5.4c).
We employed GIS-based postclassification to improve ISA extraction for those
shadow areas that were impossible to be separated (Figure 5.4d).

The multiple agent segmentation considers spectral, texture, and shape
information. In an object-oriented approach, the segmentation technique
makes it possible to generate a hierarchical net of image segments on several
levels of scale. In the segmentation process, the size and shape of desired
objects can be defined by the calculation of heterogeneity between adjacent
pixels. After a preliminary classification, objects are merged by classification-
based segmentation. In MASC modeling, we incorporated shape information
by heterogeneity change in place of spectral difference as the cost function
for merging of two regions. There are different possibilities to describe
change of heterogeneity before and after a merge [11,12]. A common method
for heterogeneity change is described as follows.

The overall heterogeneity change lichange includes spectral, texture, and
shape agents.

m+142
hehange = Z wa (Mobjt (ham — Maobjt) + Nobjz (fam — haobiz)), (5.8)
A=1
where
hchange 18 the overall change of heterogeneity when two regions are
merged
ham is a heterogeneity of merged region for agent A
hacbjt and haepjz are the heterogeneities of two regions merged for
agent A
Nobjt and 7ngpp are the number of pixels in each of the two regions
merged
w, is the weight of each heterogeneity measure for agent A



The SPLIT and MASC Models for Extraction of Impervious Surface 85
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(b) Shadow-effect
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The flowchart of MASC modeling, which includes a segmentation submodel (a); a shadow-
effect submodel (b); a classification submodel (c); and the postclassification submodel (d).

We used three spectral channels from the true-color orthophotoas A=1,2,3
(i.e., m=23) for the heterogeneity measures described in Equation 5.8.
We used the fourth channel (A=4) for the texture component and the
fifth and sixth channels (A =5, 6) for the shape components.

The shadows caused by tall vertical objects, such as tree crowns,
are unavoidably associated with high spatial resolution remote sensing
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imageries. As the segmentation submodel has difficulty in differentiating
shadow areas, we added a split-and-merge method in the shadow-effect
submodel to deal with those types of mixed regions. This shadow-
effect submodel identifies mixed regions based on the spectral feature and
separates mixed regions into single pixels and then applies the multiple
pass algorithm [13]. The submodel takes a small value as the global thresh-
old for this new segmentation. Finally, it takes a process of region constraint
in the multiple pass algorithm in the segmentation.

As we obtained a segmented image after initial and additional seg-
mentation processes, we implemented a MANOVA-based classifier on
the segmented image. Based on this classifier, we took into account the
relationship between spectral bands, the variability in training objects,
and the objects to be classified. We used a repeating algorithm based on
a quality index in this submodel to obtain appropriate numbers of land-
cover classes. When the mean of quality index for an image was lower
than the previous mean, a new signal of object, which had the largest
quality index in the image, was added into the training clusters. The
classification stopped when the mean of quality index was larger than
the previous one.

We selected a subset area from the township of East Greenwich, Rhode
Island, as a test area. The landscape of this test area is characterized by
extensive suburban development (Figure 5.5a). The true-color digital
orthophoto data possess 1 m spatial resolution with red, green, and
blue spectral bands and are distributed in GeoTIFF format (Figure 5.5b).
We used a 3 X 3 window to extract the texture information of variance as
one of the features in the segmentation process, as texture information
can be helpful for definition of regions that have different levels of
internal variance [13].

In MASC modeling, we first established training samples for five main
classes including urban land, agricultural land, forest land, barren land,
and water. Each class contained several subclasses. In order to obtain
better classification results for the testing site, we employed a preclassifica-
tion stratification method to divide the study area into five main categories
as listed here before applying the MASC algorithm. The repeating algorithm
added new subclasses into training samples and combined these new
samples into existing subclasses or assigned new labels. We employed 1997
land-use dataset from Rhode Island Geographic Information System (RIGIS)
database to build boundaries of five generalized categories. As some of the
objects from the segmented image covered more than one category, this
method assigned those to appropriate categories based on the percentage of
its pixels within the five categories. We performed classifications based on
this method and recorded results into ISA and non-ISA only.

We performed the MASC among each category with specified training
object samples. We also used a rasterized GIS transportation data as a
reference to identify road networks and integrated road data with output
from the classification submodel to obtain final ISA coverage.
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FIGURE 5.5 (See color insert following page 292.)
An example of true-color digital orthophoto data with 1 m spatial resolution for the East
Greenwich, Rhode Island (a, b) and the ISA extracted by MASC modeling (c).

5.3 Result
5.3.1 SPLIT Modeling Result

The trained SPLIT model was first used to derive proportions of imper-
vious surface and other types of land covers for the four sites that had
coverage of videography data. A comparison of conventional pixel-based
classification of TM image (Figure 5.6a) and the proportions of ISA
obtained from the SPLIT model (Figure 5.6b) indicates that proportional
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FIGURE 5.6

A comparison of ISA derived by conventional classification of TM data (a) and by SPLIT model
(b). The results of extracted proportions of ISA for the DuPage County by extrapolation of
SPLIT model (c).

information represents improved information of ISA distribution. The
continuous ISA were correctly identified at 80%-100% in proportions,
whereas the narrow roads and edges of ISA were identified at lower
proportions of ISA. Instead of using one fixed label for a classified TM
pixel, the SPLIT model was able to extract subpixel proportions of ISA
within TM pixels. With the trained SPLIT model and using TM data as
the input, we were able to extrapolate the extraction of proportions of ISA
to the areas beyond the coverage of videography data, in this case the
entire DuPage county (Figure 5.6c¢).

The SPLIT model performed well when the proportional level of ISA was
between 41% and 60%. The reason could be that there was no dominant
proportion of land-cover types at the middle ranged mixing proportions
(41%-60%). Therefore, the relationships between TM pixel values and the
mixing patterns of subpixels could be more accurately identified and
extracted. When the proportion intervals were off the middle ground, that
is, at 21%-40% and 61%-80% intervals, the influence from one dominant
land-cover type could reduce the effectiveness of extracting proportions of
other types within TM pixels. The 81%-100% interval was considered pure
pixels and these pixels were handled by the pure-pixel subnet. Accuracy
assessment result in Table 5.1 indicates that the higher the proportions of
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TABLE 5.2
Accuracy Assessment of MASC-Derived ISA

MASC Model-Derived ISA

Row  Omission

Reference ISA  Non-ISA Total Error (%) Accuracy (%)
ISA 89 11 100 11 89
Non-ISA 1 99 100 1 99
Column total 90 110 200

Commission Error (%) 1.11 10 Overall 94

ISA within a TM pixel, the better the accuracy achieved. The high-end
intervals were either close to or among the pure pixels. The pure pixels at
80%-100% interval achieved the best accuracy.

5.3.2 MASC Modeling Result

An example of extracted ISA using MASC modeling for the test site is
illustrated in Figure 5.5c. The MASC modeling treated groups of pixels
as classification targets and obtained detailed spatial distribution of ISA
using high spatial resolution digital orthophoto data.

We used random point sampling method to evaluate the accuracy of
ISA extracted by MASC. We selected 200 test samples and examined the
classification accuracies for ISA and non-ISA only. The confusion matrix
indicated that the MASC modeling achieved 94% overall accuracy
using orthophoto (Table 5.2). The producer’s and user’s accuracies were
89% and 98.9% for the ISA, and 99% and 90% for the non-ISA categories,
respectively. The kappa coefficient was 0.88.

5.4 Conclusion and Discussions

With a variety of remote sensing data from multiple sensor systems becom-
ing available, different modeling procedures and algorithms need to be
developed and tested to meet the requirements in data and information
acquisition. The SPLIT model extracted proportions of ISA in a predomi-
nately suburban residential and commercial landscape. Instead of using a
fixed label of land-cover type for classified TM pixels, proportions of ISA
were extracted through integration of TM and finer spatial resolution sub-
pixel information provider. Several factors contributed to the performance
of the SPLIT model.

Firstly, the identical spectral coverage between digital videography data
and the first four spectral bands of TM established the relationships
between TM pixels and subpixel spectral patterns. The same day and almost
simultaneous data acquisition of TM and subpixel videography data
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assured the quality of subpixel information. Otherwise, appropriate image
processing needs to be conducted to match coarser resolution sensor data
with finer resolution subpixel information providers.

Secondly, the mechanism of SPLIT modeling was able to decompose a
complex task, such as mixing scenarios of subpixel proportions, into sim-
plified subtasks with specific targets of land-cover compositions and pro-
portions. The subnets of MANN were capable of obtaining reliable
information about proportion compositions.

Thirdly, the inverse simulation reinforced evaluation of extracted land-
cover proportions. This process assured the accuracy of subpixel information
extraction since it adopted combination of land-cover types and proportion
intervals that most closely matched original TM pixel values.

Further, the supporting library imbedded within the control unit
recorded the patterns between TM pixel features and the corresponding
subpixel compositions during the training process. Once trained, the SPLIT
model can be extrapolated to areas that have no coverage of finer spatial
resolution data by simulation operations. Therefore, the SPLIT model is an
effective way of using limited resources of high spatial resolution data to
obtain extended subpixel proportions for a large area.

For obtaining precise ISA information from high spatial resolution true-
color digital orthophoto data, object-oriented modeling methods are among
the essentials. To this end, we developed the MASC model. Besides seg-
mentation and shadow effect, the MANOV A-based classification exploited
correlations of spectral bands to explain the spectral distance between
training objects and those to be classified. An established quality index
was able to measure the classification performance. With this index and a
repeating algorithm, appropriate number of classes can be derived to
achieve improved classifications. The MASC-obtained ISA maps confirmed
the effectiveness of this object-oriented approach in mapping precise ISA
from popularly used true-color digital aerial photography data.
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6.1 Introduction

Many techniques have been developed to estimate and map impervious
surfaces using remotely sensed data. Spectral mixture analysis (SMA), as
a subpixel information extraction algorithm, is gaining interest in the remote
sensing community in recent years. The linear SMA model assumes that
the spectrum measured by a sensor is a linear combination of the spectra of
all components within the pixel (Adams et al., 1986). Because of its effect-
iveness in handling the spectral mixture problem associated with medium-
resolution (10-100 m) satellite imagery (such as Landsat TM/ETM+, and
Terra’s ASTER images), linear SMA has been widely used in the estimation
of impervious surfaces (Ward et al., 2000; Madhavan et al., 2001; Phinn et al.,
2002; Wu and Murray, 2003; Lu and Weng, 2006a,b). Three distinct methods
based on the SMA model have been developed for estimation of impervious
surface. These include (1) extraction of impervious surface as one of the
endmembers in the standard SMA model (Phinn et al., 2002), (2) estimation
by the addition of high-albedo and low-albedo fraction images, both as
the SMA endmembers (Wu and Murray, 2003), and (3) the combination of
several impervious surface endmembers from a multiple endmember SMA
model (Rashed et al., 2003). However, these SMA-based methods have a
common problem, that is, impervious surface is often overestimated in
the areas with a small amount of impervious surface, but is underestimated
in the areas with a large amount of impervious surface.

This problem has to do with the limitation of spatial and spectral reso-
lution in the medium-resolution imagery. These images are regarded as too
coarse for use in mapping urban landscape because of its heterogeneity and
the complexity of urban impervious surface materials. Identifying one suit-
able endmember to represent all types of impervious surfaces is often found
problematic. Lu and Weng (2004) suggested that three possible approaches
may be taken to overcome these problems: (1) by stratification, (2) by use of
multiple endmembers, and (3) by use of hyperspectral imagery. In the SMA
model, the maximum number of endmembers is directly proportional to the
number of spectral bands used. The vastly increased dimensionality of
a hyperspectral sensor may remove the sensor-related limit on the number
of endmembers available. More significantly, the fact that the number of
hyperspectral image channels far exceeds the likely number of endmembers
for most applications readily permits the exclusion from the analysis of
any bands with low signal-to-noise ratios or with significant atmospheric
absorption effects (Lillesand et al., 2004).

Little research has been conducted in impervious surface estimation with
hyperspectral imagery based on SMA. The recently launched EO-1 satellite
with the Hyperion sensor provides a great opportunity for such a study.
Hyperion is a hyperspectral sensor of 242 bands with 30 m spatial reso-
lution. Onboard the same satellite, the ALI sensor is a multispectral one with
the same spatial resolution. This satellite platform is ideal for comparative



Extracting Impervious Surface from Hyperspectral Imagery 95

studies between a hyperspectral and a multispectral sensor. The objectives
of this chapter are to conduct SMA with various combinations of endmem-
bers by using Hyperion images and to compare impervious surface maps
extracted from the Hyperion and ALI images. We intend to address the
following questions in this research: (1) Is the hyperspectral data better
suited than multispectral data in impervious surface estimation? and
(2) Which combination of SMA endmembers would produce the most
accurate impervious surface map?

6.2 Data Used

An EO-1 ALI image and a Hyperion image covering Marion County,
Indiana, United States (refer to Chapter 4 for a brief description), which
were acquired on April 12, 2003, under clear weather conditions, were used
in this research. Both images were georectified to a Universal Transverse
Mercator coordinate system, using a nearest-neighbor resampling method.
The RMSE of <0.5 pixels were obtained from both rectifications. The ALI
image had 10 bands ranging from 433 to 2350 nm in wavelength, with
a panchromatic band. The Hyperion image had 242 bands covering
from 400 to 2500 nm in wavelength. However, there were 38 empty bands
and 43 noisy bands, which were removed before data processing. The fourth
track of the ALI image overlapped with the Hyperion image (256 pixels in
width and 6478 lines in length). Both images were subset into the same
study area for the purpose of comparison.

Orthophotographs were used for validation of impervious surface esti-
mation results and for accuracy assessment. The color orthophotographs
were provided by the Indianapolis Mapping and Geographic Infrastructure
System, which was acquired in April 2003 for the entire county. The ortho-
photographs have a spatial resolution of 0.14 m. The coordinate system
belongs to Indiana State Plane East, Zone 1301, with North American
Datum of 1983. The orthophotographs were reprojected into the same
coordinated system as the ALI and Hyperion images and resampled to 1 m
pixel size for the sake of quicker display and shorter computing time.

6.3 Methodology
6.3.1 Linear Spectral Mixture Analysis

Linear spectral mixture analysis (LSMA) is a physically based image-
processing method. It assumes that the spectrum measured by a sensor is
a linear combination of the spectra of all components within the pixel
(Adams et al., 1986). The mathematical model of LSMA can be expressed as
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n
Ri =) fiRy+ER; (6.1)
k=1

where
i=1, ..., m (number of spectral bands)
k=1, ..., n (number of endmembers)
R; is the spectral reflectance of band i of a pixel that contains one or
more endmembers
fx is the proportion of endmember k within the pixel
R is the known spectral reflectance of endmember k within the pixel
on band i
ER; is the error for band i

To solve f;, the following conditions must be satisfied: (1) selected end-
members should be independent of each other; (2) the number of endmem-
bers should be less than or equal to the spectral bands used; and (3) selected
spectral bands should not be highly correlated.

Estimation of endmember fraction images with LSMA involves image
processing, endmember selection, unmixing solution, and evaluation of
fraction images (Boardman, 1993; Boardman et al., 1995). Of these steps,
selecting suitable endmembers is the most critical one in the development of
high-quality fraction images. Following the georectification, principal com-
ponent analysis was performed to reduce data redundancy and correlations
between spectral bands. Both ALI and Hyperion images were found to be
highly correlated, especially the Hyperion image. It is found that most of
the information content was concentrated in the first three principal com-
ponents (accounting for 94.4% of the total variance in the ALI image and
98.4% in the Hyperion image). These components were retained for use in
the LSMA models, whereas the higher-order components were discarded
due to the high proportion of noise content (Figure 6.1).

6.3.2 Endmember Selection

Endmembers were initially identified from the ALI and Hyperion images
based on high-resolution aerial photographs. Four types of endmembers
were selected: green vegetation (vegetation), soils (including dry soil and
dark soil), low-albedo (asphalt, water, etc.), and high-albedo surfaces (con-
crete, sand, etc.). Vegetation was selected from the areas of dense grass,
pasture, and forestry. Different types of impervious surfaces were selected
from building roofs, airport runway, highway intersections, and so on. Soils
were selected from bare grounds in agricultural lands. Next, these initial
endmembers were compared with those endmembers selected from the
scatter plots of PC1-PC2, PC2-PC3, and PC1-PC3. The endmembers with
similar PC spectra located at the extreme vertices of the scatter plots were
finally selected. Figure 6.2 shows the selection of the endmembers and their
spectral reflectance characteristics.
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(a) PCA Band1(66%) PCA Band2(28%) PCA Band3(0.4%)

(b) PCA Band1(96%) PCA Band2(3%) PCA Band3(0.4%)

FIGURE 6.1
PCA bands of ALI and Hyperion images.
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Spectral reflectance characteristics of the selected endmembers are also shown.
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To find the best quality fraction images for estimation of impervious
surfaces, different combinations of endmembers were examined and com-
pared. The combinations included (1) four endmembers of high albedo, low
albedo, vegetation, and soil; (2) three endmembers of high albedo,
low albedo, and vegetation; (3) three endmembers of high albedo, low
albedo, and soil; (4) three endmembers of high albedo, vegetation, and
soil; (5) three endmembers of low albedo, vegetation, and soil. Visualization
of fraction images, analysis of fractional spectral properties of representative
land-cover types, and assessment of error images were conducted to deter-
mine which combination provided the best fractions for each image.
Because this study was more interested in estimating impervious surfaces
in the urban area than in the rural area, the criteria for selecting the most
suitable fraction images were based on (1) high-quality fraction images for
the urban landscape, (2) relatively low error, and (3) the distinction among
typical land-use and land-cover types.

A fully constrained LSMA was then applied to the ALI and Hyperion
images. Overall, the SMA results using four endmembers for both ALI
and Hyperion were found to be most satisfactory. The RMS errors
were small. The fraction images of high albedo, vegetation, and soil were
consistent with the land-use and land-cover pattern of the study area
(Weng et al., 2004). However, the low-albedo fraction was found to be
much harder to interpret. In fact, the low-albedo fraction related to many
materials, such as water, shade, dark impervious surfaces, and so on. It is
assumed that in the central business district (CBD), low-albedo fraction
should be directly related to impervious surface, but for the residential and
the surrounding rural areas, water and shade were both shown with high
fraction values in the low-albedo images. In addition, LSMA results using
three endmembers might produce reasonably good results, especially those
of the three-endmember combination of vegetation, low albedo, and soil.

6.3.3 Impervious Surface Estimation

The estimation of impervious surface was implemented by using the rela-
tionship between the reflectance of two endmembers (high albedo and low
albedo) and the reflectance of the impervious areas. Wu and Murray (2003)
developed an estimation procedure based on this relationship. The fraction
images of high albedo and low albedo were added together directly and it
was found that impervious surface was located on or near the line connect-
ing the low-albedo and high-albedo endmembers in the feature space. The
impervious surface image can be computed as

Rimp,p = fiowRiow,b + fhighRnighb + € (6.2)

where
Rimp,» is the reflectance spectra of impervious surfaces for band b
flow and fign are the fractions of low albedo and high albedo,
respectively
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Riow,y and Rpign are the reflectance spectra of low albedo and high
albedo for band b
ep is the unmodeled residual

The fitness of this two-endmember linear spectral mixture model has been
demonstrated by Wu and Murray for the CBD of Columbus, Ohio, United
States. However, some low-reflectance materials (e.g., water and shades)
had to be masked out before adding high-albedo and low-albedo fractions
together to get an impervious surface image.

In this work, Wu and Murray’s method (2003) was applied. The final
impervious surface images were considered satisfactory. Figures 6.3 and
6.4 display the final images, with color maps to show the distribution of
impervious surface at four categories. Before developing the impervious
surface images, the impacts from low-reflectance materials (e.g., water
and shade) and high-reflectance materials (e.g., clouds and sand) were isol-
ated and removed. Green vegetation and soil endmembers were considered
as not contributing to impervious surface estimation. After removing these
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FIGURE 6.3 (See color insert following page 292.)
Impervious surface image derived from ALI image. The color figure to the right shows the
distribution of impervious surface at four categories.
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FIGURE 6.4 (See color insert following page 292.)
Impervious surface image derived from Hyperion image. The color figure to the right shows the
distribution of impervious surface at four categories.

pixels, pure impervious surfaces were estimated with the addition of low-
and high-albedo endmembers by a fully constrained linear mixture model.

6.3.4 Evaluation of Impervious Surface Images

Accuracy assessment of impervious surface images was regarded as an
important aspect of our method. Selecting sufficient number of reference
data through a proper sampling method is crucial. A total of 100 samples
with 3 X 3 pixel size (90 m X 90 m) were designed using a stratified random
sampling scheme. For each sample, impervious surface was digitized on the
corresponding DOQQ using ArcGIS. After the digitization, the proportion
of impervious surface area was computed by dividing the area of impervi-
ous surface by the sampling area. Figure 6.5 illustrates the design of sample
plots and the method for obtaining reference data by digitizing impervious
surface polygons within selected samples. The root-mean-square error
(RMSE), the mean average error, and the correlation coefficient (R?) were
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FIGURE 6.5

Method for collecting sample plots on the impervious surface images and for digitizing the
impervious surface areas on the orthophotograph. These reference data were then used for
assessment of the accuracy of impervious surface images.

then calculated to indicate the accuracy of impervious surface estimation.
The following were the equations:

RMSE = (6.3)
MAE = (6.4)
R? = (6.5)

where
I; is the estimated impervious surface fraction for sample i
I; is the impervious surface proportion computed from aerial photo-
graphy
I is the mean value of the samples
N is the number of samples
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6.4 Analysis of Results
6.4.1 Results of Spectral Mixture Analysis

LSMA was performed on both ALI and Hyperion images using five differ-
ent combinations of endmembers.

6.4.1.1 Four Endmembers of High Albedo, Low Albedo,
Vegetation, and Soil

The SMA results derived from both ALI and Hyperion images using the
four endmembers were very good. The mean RMS errors were <0.05 in both
cases. The fraction images of high albedo, vegetation, and soil showed
unique information and fit the general patterns (Figure 6.6). High-albedo
fractions had high values in the CBD area, whereas, a large amount of soil
and vegetation was concentrated in residential and rural areas. However,
low albedo appeared to be harder to interpret because of its complicated
spatial patterns.

Correlation analysis was conducted to analyze the relationship between
the fraction images acquired from ALI and Hyperion data. Results
show that there were strong correlations between the fraction images
derived from the two images. Especially, for the vegetation and low-albedo
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(a) High albedo Vegetation Low albedo Soil  RMSE =0.036

FIGURE 6.6
Fraction images (high albedo, low albedo, vegetation, and soil) from spectral mixture analysis
of the ALI and Hyperion images.

(continued)
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FIGURE 6.6 (continued)

fractions, correlation coefficients reached 0.93 and 0.91, respectively.
These high corrections indicate that the impervious surface extraction
method developed in this research can be successfully used for satellite
images from other sensors. On the other hand, the two soil and high-albedo
fraction images showed weaker correlations (coefficients: 0.66 and 0.74,
respectively). These two fractions may have confused with each other, or
were influenced by the spectral properties of other materials. Figure 6.7
further shows that linear relationships were apparent between the corre-
sponding fractions extracted from ALI and Hyperion images, especially in
the vegetation fractions. This linearity means that the two vegetation-frac-
tion images were highly similar.

6.4.1.2 Three Endmembers of High Albedo, Low Albedo, and Soil

Figure 6.8 shows the fraction images of high albedo, low albedo, and soil
derived from ALI and Hyperion images, respectively. The mean RMS error
in both cases was <0.05. The high-albedo and soil fractions were extracted
satisfactorily. Nevertheless, because of lack of a vegetation endmember,
low-albedo fractions ended up with mixing vegetation. Low-albedo frac-
tions contained many different types of materials, such as water, canopy
shadows, building shadows, moisture in grass or crops, and dark impervi-
ous surface materials. As a result, low-albedo fraction images cannot be
used for estimation of impervious surfaces.

Correction analysis indicates that the two low-albedo fractions correlated
highly with a coefficient of 0.96. However, the correlation coefficients
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FIGURE 6.7
Correlations between the fraction images of ALI and those of Hyperion (high albedo, low
albedo, vegetation, and soil).

between the two high-albedo and soil fractions were 0.72 and 0.74, respec-
tively. Figure 6.9 demonstrates the strong linear relationships again between
the corresponding fractions derived from the images of different sensors.
Therefore, our SMA method is regarded to be consistent. Low-albedo frac-
tion values estimated from the Hyperion image were higher than those
generated from the ALI image.

6.4.1.3 Three Endmembers of High Albedo, Low Albedo, and Vegetation

Figure 6.10 shows two groups of the three fraction images of high albedo,
low albedo, and vegetation. The RMS error for SMA of the ALl image is 0.12,
and the RMS error for Hyperion is 0.037. This indicates that Hyperion was
better than ALI when using three endmembers of high albedo, low albedo,
and vegetation for spectral unmixing. The information on high albedo, low
albedo, and vegetation can be extracted clearly. Soil ended up with being
categorized into residuals, which increased the RMS error as a whole.
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FIGURE 6.8
Fraction images (high albedo, low albedo, and soil) from spectral mixture analysis of the ALI
and Hyperion images.
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Correlations between the fraction images of ALI and those of Hyperion (high albedo, low
albedo, and soil).

The small RMS error for the SMA results of Hyperion image offers the
potential for the fractions to be used in impervious surface estimation and
mapping.

Correlation analysis yielded a coefficient of 0.94 between the vegetation
fractions and 0.89 between the high-albedo fractions. The low-albedo frac-
tions had a low correlation coefficient of 0.65. Figure 6.11 indicates that the
vegetation fractions perfectly matched along the diagonal line, and simi-
larly, with the high-albedo fractions. Low-albedo fraction values from the
Hyperion image appeared to be higher than those from ALI in many cases.

6.4.1.4 Three Endmembers of High Albedo, Vegetation, and Soil

Figure 6.12 displays the SMA results with the endmembers of high albedo,
soil, and vegetation. The mean RMS error of 0.2 was achieved for both ALI
and Hyperion data, denoting a poor fit of the SMA model. This is due to the
fact that low-albedo materials were so unique that they cannot be combined
into any other category. The combination of low albedo with other
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FIGURE 6.10
Fraction images (high albedo, low albedo, and vegetation) from spectral mixture analysis of the
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Correlations between the fraction images of ALI and those of Hyperion (high albedo, low
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endmembers would increase the residuals of the SMA model and the RMS
error. Although high-albedo, soil, and vegetation fractions were all
extracted satisfactorily, because of the higher RMS error, this combination
of the endmembers is regarded unsuitable for further use in impervious
surface estimation.

The corresponding fraction images were found significantly correlated
too (Figure 6.13). The correlation coefficients for the high-albedo, vegetation,
and soil fractions were 0.85, 0.84, and 0.7, respectively. Soil fractions
possessed the lowest correlation coefficient value. The scatter plot between
the two vegetation fractions showed a diagonal trend, implying that the
extractions were agreeable from the ALI and Hyperion images.

6.4.1.5 Three Endmembers of Low Albedo, Vegetation, and Soil

Figure 6.14 displays vegetation, low-albedo, and soil fractions derived from
ALI and Hyperion images. The mean RMS error for SMA of ALI image was
0.075 and for Hyperion, 0.2. The vegetation and soil fractions were extracted
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FIGURE 6.12
Fraction images (high albedo, vegetation, and soil) from spectral mixture analysis of the ALI
and Hyperion images.
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Correlations between the fraction images of ALI and those of Hyperion (high albedo, vegeta-
tion, and soil).

successfully, but low-albedo and high-albedo materials were mixed together.
The RMS error for ALI image was small, and the results may be used for
further studies in impervious surface estimation. The correlation coefficients
between vegetation fractions reached 0.93, between low-albedo fractions,
0.83, and between the soil fractions 0.95. Figure 6.15 shows that the derived
vegetation, low-albedo, and soil fractions were all agreeable according to
both sensors.

In sum, using four endmembers in both cases generated satisfactory
results, with low RMS error and fraction values consistent with land-cover
patterns. Some combinations of three endmembers may also give rise to a
good extraction of fraction images and to small residuals. The results of
correlation analysis between the corresponding ALI and Hyperion fractions
were all strongly positively correlated to each other, especially with the
vegetation fractions. The fact that vegetation fraction images showed such
a perfect diagonal match in the scatter plots suggests that for vegetation
studies, Hyperion and ALI images would not have much difference with
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and soil).

our SMA-modeling approach. However, the correspondent soil and low-
albedo fractions had weaker correlations than vegetation and high-albedo
fractions. Fractions derived from the Hyperion image were a little better
than those from ALI image. This is because Hyperion imagery has a much
narrower bandwidth and more data dimensions than ALI imagery, and
therefore is more effective in the extraction of fraction images, especially
for low-albedo fraction.

6.4.2 Results of Impervious Surface Estimation

In this study, fraction images derived from both ALI and Hyperion images
using the four-endmember SMA model were used to generate impervious
surface images. Before adding high-albedo and low-albedo fraction images
to calculate impervious surfaces, water and shade had to be removed.
Because of lower temperatures of water and shade compared to impervious
surfaces, it was possible to differentiate shade and water by calculating
their temperatures from Landsat thermal bands (Lu and Weng, 2006a).
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After that, shade and water can be masked out from the low-albedo fraction
images. Two impervious surface images were then computed. In Figures 6.3
and 6.4, the brighter the pixel, the higher the value in the impervious surface
fraction images. Impervious surfaces such as roads, building roofs, side
walks, and parking lots appeared very bright, whereas forest, grass, and
cropland showed a dark tone. Both images quantified the general pattern of
impervious surfaces of the study area successfully, meaning that the frac-
tion value was higher in the CBD areas, lower in residential areas, and near
zero in the rural and vegetated areas. However, in less-developed areas,
such as medium- and low-intensity residential lands, impervious surfaces
were found to mix with vegetation and soil. While in more developed areas,
such as high-intensity residential areas, impervious surfaces may have
mixed with dry soils.

In order to determine which impervious surface image was closer to
the reality, an accuracy assessment was performed. RMSE, MAE, and R*
were calculated for both images. Results indicate that for ALI-derived
impervious surface image, RMSE =15.3%, MAE =12.4%, and R*>=0.7478
and for Hyperion-derived impervious surface image, RMSE =17.5%,
MAE = 14.8%, and R*=0.7302. It is concluded that both images had a
similar accuracy, although the Hyperion-derived impervious surface
image outperformed the ALl-derived image in the low-albedo areas.
Figure 6.16 illustrates the accuracy assessment results. It indicates that the
samples with low impervious surface were overestimated, but the samples
with high impervious surface were underestimated. The trend is in agree-
ment with previous researches (Wu and Murray, 2003; Wu, 2004; Lu and
Weng, 2006a).

6.5 Discussion

The use of remote sensing techniques to estimate impervious surfaces is still
a challenging task due to the characteristics of remotely sensed data, the
complexity of urban landscape, and the diversity of impervious surface
materials. Remotely sensed data are related to the reflectance of different
surface features and materials, but the reflectance of impervious surfaces is
very diverse and easy to be confused with other features, such as sand, dry
soils, and so on, especially in the seasons when tree canopies are gone. The
atmospheric conditions prevailing when satellite images were acquired can
also affect the estimation of impervious surfaces. For example, the reflec-
tance of clouds is similar to that of impervious surfaces, which may result in
confusion. Another factor is that dark impervious surfaces have similar
spectral characteristics with water, moist soils, and shade. Future studies
are warranted to differentiate these features from impervious surfaces.
Nevertheless, although the urban landscape of Indianapolis city is complex,
this research that has demonstrated LSMA using four endmembers
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(i.e., high albedo, low albedo, vegetation, and soil) is an effective approach
for estimating impervious surfaces.

In SMA, endmember selection is the most important step which is directly
associated with the accuracy of resultant impervious surface images. The
selection of endmembers is a process involving trial and error. It may take
much time beginning from selecting initial endmembers, testing the results,
and then refining the endmembers until satisfied results are achieved.
Moreover, the image-based endmember selection method may not be able
to identify different types of impervious surface endmembers. For most
SMA studies to date, limited endmembers, that is, three or four endmem-
bers are used because of limited data dimensions and high correlation
among the image bands. These limitations lead to the inability of represen-
ting the spectral properties of impervious surfaces of all sorts. To solve these
problems, hyperspectral imagery may be employed. This study has
demonstrated that Hyperion data were more effective than ALI data in
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estimation of low-albedo surface materials, which include a range of imper-
vious surface features. The combination of hyperspectral imagery and ref-
erence data acquired either from in situ field survey or from a spectral
library would be promising in future studies of impervious surface estima-
tion and mapping. Another approach is to use a multiple endmember
spectral mixture analysis (MESMA). The MESMA allows a large number
of endmembers to be extracted in the model and has been proved more
effective than a standard SMA method (Painter et al., 1998; Roberts et al.,
1998; Okin et al., 2001). This approach starts with a series of candidate two-
endmember models, and then evaluates each model based on the criteria of
fraction values, RMSE, and residual threshold, and finally produces fraction
images with the lowest error (Roberts et al., 1998).

The composition of low-albedo materials is complicated. These materials
may contain impervious surfaces, water, building shade, tree canopy shade
in forested areas, moist soils, and so on. As a result, before computing an
impervious surface image, water, shade, and other pervious materials have
tobe removed. Although water is easy to be masked out through an unsuper-
vised classification, shade is difficult to be identified and removed. To
remove shade, several methods can be applied. For example, topographical
shade can be masked out by topographical correction, while vegetation shade
may be removed after a detailed study of vegetation canopy structures. In
addition, the use of thermal infrared and radar imagery may aid greatly in
impervious surface estimation, possibly through data fusion (Slonecker et al.,
2001). Lu and Weng (2006a) have successfully used Landsat thermal infrared
data to enhance their estimation of impervious surfaces based on the differ-
ence in land surface temperature between impervious and pervious surfaces.
The land surface temperature image was used as a threshold to remove dry
soils from the high-albedo fraction image and to remove water and shadows
from the low-albedo fraction image. Radar data have inherent advantages in
the identification and estimation of impervious surfaces because of the high
dielectric properties of most construction materials and the unique geometry
of man-made features (Slonecker et al., 2001).

6.6 Conclusions

In this chapter, impervious surface fraction images were directly extracted
from EO-1 Hyperion and ALI images by applying a fully constrained LSMA.
This chapter further demonstrates that remote sensing-based impervious
surface estimation has the potential to take place of the labor-intensive
method of digitizing on aerial photographs, especially for a large study
area. Although SMA has been conducted on medium spatial resolution
imagery in previous researches, using EO-1 Hyperion and ALI data to
estimate impervious surfaces has not been seen in the literature. Because
of the integration of hyperspectral and multispectral sensors on the same
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satellite, it is possible to use images of both sensors for comparative studies.
In this chapter, both Hyperion and ALI images have been analyzed by
LSMA and the results were compared based on the quality of fraction
images and RMS error. Correlation analysis was further performed to
make the comparison quantitatively. The results indicate that there was a
strong positive linear relationship between the fraction images derived from
the Hyperion and from the ALI images. The fraction images were highly
similar, especially between the vegetation fractions. This implies that our
method of impervious surface estimation was consistent, and thus has the
potential to apply to other images. The comparison has also provided some
new insights for future impervious surface studies. Our result suggests that
the low-albedo endmember was most difficult to identify due to its spectral
variation, and that the Hyperion image was more effective. Results from this
research offer a foundation for subsequent impervious surface estimation
with moderate spatial resolution imagery. Future researches are suggested
in the following areas: (1) the combined use of hyperspectral imagery with
reference data acquired either from in situ field survey or a spectral library
streamlining the selection of endmembers in SMA; (2) the multiple end-
member LSMA, instead of the standard LSMA, should be applied for
the development of fraction images in impervious surface estimation;
(3) different methods may be used to remove shades from satellite imagery,
which tend to confuse with low-albedo materials; and (4) impervious sur-
face estimation and mapping should utilize the data and techniques of
thermal and radar remote sensing.
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7.1 Introduction

This chapter considers the utility of fractal analysis in separating different
types of impervious land cover with a focus on roofs, roads, and driveways
in suburban imagery.

7.1.1 Classifying Land Cover and Land Use

Traditional image classification is fundamentally a problem of segmenting
images into regions that have similar spectral characteristics. These tech-
niques rely on spectral data alone and consider each pixel independent of its
neighbors [1]. While such approaches have proven successful for classifica-
tion of lower-resolution imagery, the same has not been true for high spatial
resolution imagery. While providing unique advantages, high-resolution
imagery also presents challenges in terms of the level of variability within
a scene [2]. Whereas moderate-resolution imagery, such as Landsat
Enhanced Thematic Mapper Plus (ETM+), provides an averaged response
within a 30 m pixel, digital aerial sensors can produce imagery with a
ground sampled distance (GSD) of a decimeter or less.

Many recent studies have focused on using remote sensing techniques to
characterize areas of impervious land cover. Such characterization is often
tied to research that has established a direct relationship between the area of
impervious surface within a watershed and pollution of its surface
waters [3]. However, studies show that not all impervious land uses con-
tribute equally to the levels of contaminants present in runoff [4] and
different types of impervious surface vary in their effectiveness at produ-
cing runoff [5]—for example, roofs are generally found to contribute less
to overall catchment runoff than road surfaces. For input into hydrologic
models, it is desirable to consider areas most likely to have a hydraulic
connection to the downstream drainage system [6].

Numerous chapters in this book are focused on separating impervious
and pervious regions. However, distinguishing between types of impervi-
ous areas is challenging and can require different techniques. Because of
the similarities in construction materials, separation of different types
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of impervious cover based on spectral information alone is generally found
lacking. Objects in imagery are often discernable to the human eye because of
contrast variation and differences in roughness. Texture provides an expres-
sion of the local spatial structure in digital images [7]. Jensen [8] suggested
that adding a spatial measure, such as texture or complexity, might enhance
land-cover classifications. Texture relates to the tonal changes in an image [9]
and is often calculated by computing variance, min-max, or standard devi-
ation within a localized window [10]. Fractal dimension is another potential
method used to characterize textural differences.

7.1.2 Defining Dimensionality

Images of an urban scene reflect the complex interplay among the features
present. Such a scene commonly combines natural and artificial features
with wide variation in size, shape, and composition. Both the scene and the
features within it are often challenging to describe. Objects in the scene
are frequently characterized by their dimensionality; for example, roads
are commonly called one-dimensional, fields two-dimensional, and build-
ings are often considered to be three-dimensional. This intuitive dimension
is called topological or Euclidean dimension. Although this appears to be a
reasonable characterization of features at some scales, it does not apply
broadly. An alternative to an integer-based dimension is to consider dimen-
sionality in terms of a fractional value. A common fractional measure of
dimensionality is fractal dimension. Quackenbush [11] summarizes the
mathematical foundations of the fractal dimension.

Through its noninteger value, fractal dimension provides a description of
the intricacy of curves and surfaces [8,12]: the more spatially complex a
feature, the higher its fractal dimension [13]. Many natural features—for
example, coastlines or cloud boundaries—can be described as fractals and
characterized using fractal dimension [14]. For example, depending on the
level of complexity, a river could vary between two extremes: at its simplest
it could be considered one-dimensional (essentially a straight line), or at its
most complex it could be so tortuous that it entirely fills two spaces and
appears two-dimensional [15].

Fractal dimension has been used to measure the spatial variability of
geographic features such as coastlines and terrain surfaces [16], to incor-
porate texture in classifying types of vegetation [17], to segment images [18],
and to characterize broad classes of land use within an urban environment
[19]. Cultural features typically show lower fractal dimension than natural
objects, and studies have used this characteristic to separate natural and
artificial features within imagery [20,21]. Since different types of impervious
land cover often exhibit visual distinction in texture, fractal dimension may
be useful in characterizing these differences. One of the challenging factors
is that the visual texture of features in a digital image varies depending on
the properties of the image—for example, the size of the feature relative to
the pixel size—and it is likely that measurements of texture will also change.



122 Remote Sensing of Impervious Surfaces

7.1.3 Scale

The term scale is used in a variety of applications within the context of
spatial, temporal, or spatio-temporal analysis [10]. Two aspects of scale
often considered in the spatial context are spatial resolution and spatial
extent. The spatial resolution of a digital image is partly a function of the
instantaneous field of view of the sensor, which generally correlates to
the GSD [9]. Determining the appropriate spatial resolution for a project
can be challenging since this is a function of both the scene under analysis
and the information sought [1]. While finer spatial resolutions provide
additional detail, this is not always advantageous and may lead to increased
processing time and storage requirements, with minimal gain in terms of
the desired information. Markham and Townshend [22] reported that chan-
ging spatial resolution could have a positive or negative impact on classifi-
cation accuracy depending on the spectral overlap between classes.

A wide variety of spatial analyses, such as measurements of texture, are
performed using a localized image window. This relates to the second
aspect of scale: spatial extent, considering the appropriate size of the region
to analyze. This is often tied to the concept of spatial autocorrelation, which
is summarized by Tobler’s Law: all places are related but nearby places are
more related than distant places [23]. Woodcock et al. [24,25] evaluate the
use of variograms to assess the relationship between ground scenes and
their corresponding images. Variograms provide a means to quantify spatial
variation and establish a range within which points are considered corre-
lated. Woodcock et al. [24,25] found that the range of the variogram was
related to the size of the objects in the scene.

Scale-dependent phenomena vary with observation under different
scales [10]. Most spatial phenomena are scale-dependent [26] and their
characteristics, including texture and dimensionality, may vary based on
the spatial resolution or spatial extent studied. A theoretically perfect fractal
object will have the same fractal dimension at any scale or level of magni-
fication [27]. However, practical limitations (e.g., in image capture) lead to
variation in the measured fractal dimension for imagery of even a perfect
object. A real object may have integer dimension when studied over some
range of scales rather than at all scales [27]. For example, a road may be
considered straight and flat at some scales, and thus can be described using
Euclidean geometry, but at other scales, it has complex detail that will be
better characterized in noninteger dimensions [12].

7.1.4 Fractal Dimension of the Urban Environment

Urban environments contain a complex mixture of both natural and artifi-
cial features. Many authors consider fractal dimension useful for describing
natural features and Euclidean (integer) dimensions suitable for characteri-
zing artificial features. Other authors have found that man-made features
also display characteristics that make them suitable to characterize using
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fractal dimension at some scales of analysis [12]. The scale of consideration,
in terms of both GSD and local neighborhood size, plays an important role
in using fractal dimension to separate types of impervious land cover.

Several studies have used fractal dimension to differentiate types of land
use. Generally, these studies looked at broad classes of land use (such as
commercial or residential) rather than the very specific land-use types studied
in this project. Myint [28,29] used fractal analysis to classify 2.5 m GSD urban
imagery collected from the Advanced Thermal Land Applications Sensor
(ATLAS) into six classes: single-family homes with <50% tree canopy,
single-family homes with >50% tree canopy, commercial, woodland, agricul-
ture, and water bodies. Myint [28] visually identified ten sample plots (with
dimension 162.5 m X 162.5 m) for each of the six classes and found that using
fractal dimension for classification produced overall accuracies that were
generally below 60% for the six-class classification, with some particularly
low individual class accuracies. The author theorized that the low accuracies
were due to the substantially overlapping ranges for calculated fractal dimen-
sion for each class. This is not surprising, since the classes—for example, low-
and medium-density residential areas—included common characteristics
and thus overlapping texture characteristics. Lam et al. [30] have shown that
some fractal algorithms are sensitive to contrast enhancement. Myint [28] did
not specify what preprocessing was done before analysis.

Although Batty and Longley [19] considered their results preliminary,
their research showed the importance of the scale of analysis in characteri-
zing urban environments. Batty and Longley [19] characterized the varying
levels of complexity inherent in the urban environment by calculating
the fractal dimension of five broadly classified land uses: residential,
commercial-industrial, educational, transport, and open space. Torrens and
Alberti [31] applied this information in using fractal dimension as a measure
of urban sprawl. Torrens and Alberti [31] found that they could correlate
characteristics of development, such as sprawl, with specific signatures
calculated using a fractal-based approach. They focused on separating
compact areas of development from lower density areas on the fringes.

7.1.5 Calculating Fractal Dimension

7.1.5.1 Overview

A large number of algorithms have been developed to calculate the fractal
dimension of imagery. Turner et al. [18] broadly categorize the methods into
two groups: size-measure relationships and application of relationships.
Size-measure relationships are based on repeated measurement of the
area of a surface or the length of a curve using different scales. The tech-
niques for the application of relationship methods are based on fitting a
curve or surface to a known fractal function. The majority of techniques
reported in the literature fall under the former category. There are differ-
ences between the techniques, and two methods will rarely produce equal
values for the same object [18].
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7.1.5.2 Walking Divider and Isarithm

The walking-divider method is used to determine the fractal dimension of a
linear feature. This technique uses a pair of dividers, separated by varying
amounts, to measure the length of a curving feature as a series of chords [18].
The length of the curve is calculated as the number of steps, N(6), of length 6
using varying values of 8. As & decreases, the amount of detail that can
be captured increases and the length of the curve will appear to increase.
The dimension of the curve is calculated using a linear regression based on
the logarithm of the number of steps, N(6), against the logarithm of the step
length, 6.

The isarithm method is an extension of the walking-divider method and
is used to determine the fractal dimension of surfaces [32]. Isarithms are
generated by dividing the range of pixel values into a number of equally
spaced intervals and connecting pixels of equal intensity interval. Surface
fractal dimension is calculated as the mean fractal dimension of the isolines
that characterize the surface. Read and Lam [13] used the isarithm method
for characterizing land-use and land-cover change in Landsat TM imagery.
Myint [29] evaluated the isarithm method for characterizing texture features
of urban land-cover classes in ATLAS imagery. Weng [33] used the isarithm
method to consider patterns in urban development by studying the urban
heat island effect.

7.1.5.3 Box-Counting Dimensions

Box counting generally involves covering an object with a grid of
n-dimensional boxes of side length 6 and counting the number of nonempty
boxes N(6) [34]. As with the walking-divider method, boxes of
recursively smaller size are used to cover the object, and a bilogarithmic
plot is used to determine the fractal dimension [18]. For gray-scale imagery,
the n-dimensional box is a cube (three dimensions) with the third dimension
being the gray values. Shen [35] used binary images and simplified
the n-dimensional box to a square (two dimensions). Shen calculated the
fractal dimension of 20 urban environments in several cities to characterize
urban sprawl.

Many versions of the box-counting approach have been developed to
produce a reasonably fast and accurate algorithm [18]. A common imple-
mentation of the box-counting approach for image processing is the differ-
ential box-counting (DBC) method, developed by Sarkar and Chaudhuri [36].
Haering and da Vitoria Lobo [37] calculated fractal dimension using DBC to
separate deciduous trees from all other features in a variety of terrestrial
images. Chaudhuri et al. [38] also used a DBC method to estimate fractal
dimension for a variety of nature textures. Sarkar and Chaudhuri [36] com-
pared their DBC method with several other methods for calculating fractal
dimension and found that it provided equivalent results with a substantial
reduction in computation.
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7.1.5.4 Triangular Prism

Clarke [39] developed a triangular prism surface area (TPSA) method for
calculating the fractal dimension of topographic surfaces. Prism counting is
a derivation of the box-counting approach; instead of cubes, however, the
combined area of four-sided triangular prisms is used to determine fractal
dimension. Studies have used the triangular prism method for calculating
fractal dimension in a variety of image types, including IKONOS and
Landsat ETM+ [13,40,41]. In applying the TPSA method to imagery, inten-
sity variation is treated as the topographic surface used by Clarke [39]. The
surface area of the image is estimated using triangular prisms of varying
sizes. A triangular prism is formed using five values: the intensity of four
pixels that make up the corners of a square and the mean intensity value. An
illustration of the triangular prism formed using four adjacent pixels is
shown in Figure 7.1. The area of the top of the prism is calculated as the
sum of the area of the four triangular faces.

The prism, shown in Figure 7.1, has a base dimension of one pixel (from the
center of a pixel to the center of the neighboring pixel). The surface area of
the image is estimated using contiguous prisms that cover the entire image.
The surface area is repeatedly estimated by stepping through the same area
calculation using prisms created by groupings of four pixels separated by
increasing the base dimension. Clarke [39] analyzed square images of dimen-
sion 2"+1 and determined area using prisms with the base dimension
increasing by powers of 2 from 2° (i.e., one pixel) up to 2. As with previous
methods, the fractal dimension is calculated by considering the slope of a
bilogarithmic plot, in this case the total area of the triangular faces of the
prisms against the base area of an individual prism. Clarke [39] used prism
dimensions increasing in powers of 2 to ensure an even distribution of points
along the log-base dimension axis of the bilogarithmic plot.
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FIGURE 7.1
Ilustration of the triangular prism used for calculating fractal dimension.



126 Remote Sensing of Impervious Surfaces

7.1.5.5 Area—Perimeter Relationship

The area—perimeter method is used to characterize the shape complexity
[13] of contiguous regions, for example, areas that have been defined using
traditional classification [42]. Each class in an image is assigned a dimension
based on the relationship between the area and the perimeter of the regions
that belong to the class. Chuvieco [43] used the area—perimeter method to
evaluate the impact of fire on landscape patterns. Chuvieco [43] identified
clumps by calculating a normalized difference vegetation index (NDVI) and
then performing density slicing.

Fractal dimension is based on the principle that a feature displays self-
similarity over a variety of scales. Instead of making measurements over
various scales, the area—perimeter approach relies on variability in the size
of the clumps within a class to act as a substitute for scale variation [44].
Hence, while the area—perimeter method provides a measure of the com-
plexity of a feature class, it does not calculate this measure over a variety of
scales and thus is not a true fractal dimension.

7.1.5.6 Fractional Brownian Motion and the Variogram Method

Brownian motion was first used to describe the random motion of pollen
grains suspended in water [45]. Water molecules randomly bombard the
suspended pollen grains, causing the grains to ““walk” about in a random
fashion—that is, to move in a series of random steps in random directions.
Such motion is fractal in nature: the pattern of the motion observed at 30 s
increments will resemble the pattern created if the observation is made at
subsecond increments. The fractional Brownian motion (fBm) model is
useful for characterizing fractal objects, such as natural features, and also
for characterizing images of fractal objects. The fBm model states that
there is a statistical relationship between the distance between two pixels
and the variance of the difference in their values [29]. Using this model,
fractal dimension is calculated with the variogram measure of spatial com-
plexity [32].

Various authors have used the variogram approach in calculating fractal
dimension to perform a classification [13,29] or to resample an image [46].
Chen et al. [27] used an fBm approach to calculate fractal dimension for
classifying medical imagery and performing edge enhancement. Jaggi et al.
[41] used fBm principles to determine fractal dimension for images obtained
from NASA'’s Calibrated Airborne Multispectral Scanner. Rees [15] used the
variogram approach to evaluate the fractal dimension of ice sheet surfaces.

7.1.5.7 Power Spectrum

Turner et al. [18] present the power spectrum method as their preferred
approach to calculating fractal dimension. In this method, the real-space
image is Fourier transformed and the power spectrum is computed. This
measured power spectrum is then matched to the formula for an ideal
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fractal signal using a least-squares fit. The power spectrum approach
requires sophisticated preprocessing to estimate the power spectrum of an
image sample [47]. Because of the sensitivity of the power spectrum to
preprocessing, Soille and Rivest [47] found that the practical applications
of this approach were limited. Cox and Wang [48] found that curve-fitting
errors could be larger for the spectral method than for other techniques.
Despite this, Cox and Wang [48] reported that the technique was popular in
geophysics.

7.1.6 Issues in Calculating Fractal Dimension

A variety of factors must be considered in selecting a method to calculate
fractal dimension of imagery. Klinkenberg and Goodchild [49] compared
seven techniques for calculating fractal dimension of a series of digital
elevation models (DEMs). They found that fractal dimension calculated for
a single region varied with the seven approaches, but methods tended to
be consistent: for example, higher values were typical for one method
compared with another. Soille and Rivest [47] compared six methods for
computing fractal dimension, using three simulated images with known
fractal dimension. Of the methods reviewed by Soille and Rivest [47], the
triangular prism and variogram approaches exhibited the least discrepancy
from the true fractal dimension. Many studies have found that cultural
features generally yield low fractal dimension [20] and Soille and Rivest
[47] found that the triangular prism was the most accurate for images with
low fractal dimension. Lam et al. [30] compared the isarithm, triangular
prism, and variogram methods for calculating fractal dimension and deter-
mined that the variogram method was unsuitable for characterizing the
fractal dimension of imagery. Myint [28] used both the triangular prism
and isarithm methods and found that the triangular prism method per-
formed consistently better.

Cao and Lam [10] discuss many of the issues confronted when consider-
ing scale in remote sensing. This consideration is important since the char-
acter of a feature varies when imaged using different GSDs or when
calculated using different-sized local windows. Selecting an appropriate
sized window is partially determined by defining a neighborhood within
which pixels show correlation. Woodcock et al. [24,25] used variograms to
consider the range of distances in an image where pixels remained corre-
lated. They found that the appropriate window size is a function of the
object of interest and the spatial resolution of the imagery. Stein [20] found
that separating man-made and natural features required using a local
window that was approximately the same size as the objects of interest.
Marceau and Hay [50] reported that window size was the most significant
factor in accounting for variability in classification results. They found that
the accuracy results for different classes varied with different window sizes.

Spatial resolution, often characterized using GSD, also changes the
appearance and properties of objects in an image. One of the challenges
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in image classification is the impact of pixels that contain multiple cover
types. Markham and Townshend [22] found that reducing pixel size
reduced the overall proportion of mixed pixels and improved the accuracy
assessment. Conversely, reducing the pixel size increased the spectral
variability within classes and made class separability more challenging.
This effect has made classification of high spatial resolution imagery
challenging [2].

7.2 Methods and Materials
7.2.1 Imagery

This project used a set of digital aerial imagery acquired using the Emerge
DSS model 300 imager with a 4092 X 4077 pixel silicon CCD focal plane
array. The CCD array consists of red, green, and blue filter elements with a
spectral response similar to color film. The camera was packaged with an
integrated GPS/IMU system; thus the imagery was georeferenced without
ground control. The imagery was acquired over a study site in the Town
of Whitestown, adjacent to the City of Utica in Central New York State
(approximate site location: N 43°07.1’, W 75°18.2'). The imagery was sup-
plied as three-band normal color orthorectified single frames. The orthor-
ectification was performed using 10 m DEMs. The imagery was processed
by Emerge to mitigate the impact of two different components of noise. This
included performing a dark signal correction to remove thermal and other
dark signals from each pixel and applying individual pixel gain corrections
to generate a uniform response throughout the sensor (Kinn, G.J., personal
communication, 2004).

The sensor was flown at five altitudes over the study site, producing
imagery with GSDs of ~0.1, 0.2, 0.3, 0.4, and 0.5 m. The collection was
flown between 1:58 pm and 3:16 rm on a single day in July 2003, beginning
with the highest altitude. Two 360 m X360 m subscenes were visually
selected to include primarily residential areas. The first study area included
all five altitudes; the second included only the four highest altitudes, gen-
erating a total of nine sample images. The multialtitude nature of the dataset
provided a unique opportunity for analysis. However, since such datasets
are not generally practically available, rather than combine the imagery, this
project assessed each image separately with a goal of understanding the
potential utility of the different image scales.

7.2.2 Preprocessing

The image data used in this study were acquired using 12 bit radiometry
with conversion to 8 bit during the orthorectification process. Studies have
found that stretching image data over an 8 bit range produced the most
reliable results [13]. To ensure that values in the image subsets covered the
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available dynamic range, the data were linearly stretched using a model in
ERDAS IMAGINE (Leica Geosystems, LLC, Norcross, Georgia). The linear
stretch was used to best reflect the radiometric characteristics of the sensor
(Kinn, G.J., personal communication, 2004).

7.2.3 Calculating Fractal Dimension

7.2.3.1 Overview of Algorithm

The algorithm used to calculate fractal dimension (FD) was based on the
TPSA approach presented by Clarke [39]. As discussed earlier in this chap-
ter, the triangular prism method approximates the surface area of an image
using a series of triangular prisms with varying base dimensions. The
triangular prism algorithm was selected because it was appropriate for
small image windows; it has been shown to be computationally efficient
and accurate; and it has provided encouraging results for a variety of
applications. The algorithm was coded as a series of modules using Visual
Basic. Local fractal dimension was calculated throughout the image based
on a neighborhood window.

7.2.3.2 Window Size

Using the triangular prism method to determine fractal dimension involves
calculating the area of a series of triangular prisms over several scales.
Because this calculation uses a bilogarithmic plot, prism sizes were incre-
mented as powers of 2 to ensure an even distribution of points. Research has
suggested that smaller windows better reflect land-cover classes. However,
this must be balanced with the number of points needed to fit a line in the
linear regression. The minimum window size used was 17 X 17, which
provided five points. The appropriateness of this number of points was
confirmed by consideration of the standard error of the slope of the line
on the bilogarithmic plot used to determine fractal dimension.

Local fractal dimension was calculated for each image subset using win-
dow sizes of 17 X 17, 33 X 33, and 65 X 65 pixels. The corresponding ground
area varied based on the GSD of the image. With the smallest GSD, win-
dows of dimension 17 X 17, 33 X 33, and 65 X 65 corresponded to 1.7, 3.3,
and 6.5 m, respectively; with the largest GSD, the windows corresponded to
8.5,16.5, and 32.5 m. The maximum window size was limited in part by the
processing power of the computer used.

7.2.3.3 Multiband Modification

The triangular prism algorithm developed by Clarke [39] was originally
applied to gray-scale DEMs. Researchers have applied the algorithm to
single image bands or from an intensity layer derived from multiband
imagery. The TPSA algorithm uses Heron’s formula to calculate the area
(A) of a triangle with side lengths 4, b, and c:
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A% =5(s —a)(s — b)(s — ¢) where s=1/2(a+b+c¢) (7.1)

Each side length is calculated based on the coordinates of the triangle
vertices. With a single-band image, the coordinates of each vertex are
expressed in three dimensions: two based on pixel coordinates, with
the third coordinate being the image intensity value. This work used all
of the bands in the multispectral imagery by calculating the side lengths of
each triangular prism face using the two pixel coordinates and the digital
numbers (DNs) from the three bands of the imagery.

7.2.3.4 Pixel Size-Digital Number Ratio

The relationship between pixel size and digital numbers is well defined in
DEMs—for example, both are commonly defined in meters—thus the area
of the triangular prism has meaningful units. When the algorithm is applied
to imagery, the surface area computed mixes both spatial and intensity
units. This undefined relationship is one reason why the triangular prism
method is sensitive to contrast stretches since only the DNs are affected by
such a stretch. In order to assess the impact of such stretching, a factor was
incorporated into the algorithm that enabled specification of a ratio between
pixel size and digital number before calculating the length of the sides of
each triangular face. Processing was performed on each of the image subsets
with ratios of 0.1, 1, and 10. This had the effect of stretching the original 8 bit
range of the DNs from 0 to 2550, 0 to 255, and 0 to 25.5, respectively.

7.2.4 Assessment

7.2.4.1 Overview

The linear regression used to calculate fractal dimension generates intercept
and R* values. Several researchers have found that the intercept from the
regression provides useful information, and when preliminary analysis
suggested that the R* values might also provide additional value, all three
output variables were considered with a multivariate analysis of variance
(ANOVA) using SAS software (SAS Institute, Inc., Cary, North Carolina).
Where multivariate differences between the cover types occurred, univari-
ate analysis was performed to determine which variables were significant.
The multivariate and univariate analyses considered the three cover types
as a group (overall analysis) and where significant differences were found,
also considered pairwise groupings of the cover types—that is, road vs.
roof, road vs. driveway, and roof vs. driveway.

7.2.4.2 Separating Cover Types

The imagery covered a residential area in Central New York. Roads in
the area are asphalt (averaging 7-9 m wide); driveways are asphalt or
concrete (averaging 5-6 m wide and 11-14 m long); and roofs are various
colors of asphalt shingles (averaging 9-12 m wide and 15-17 m long).



Separating Types of Impervious Land Cover Using Fractals 131

100

80 1 B

60 1 o Roof
= Road
40 . . m Driveway

20 1

Mean St.Dev. Mean St.Dev. Mean St. Dev.
Red Green Blue

FIGURE 7.2
Mean and standard deviation of digital numbers in bands of 0.1 m GSD image for three
impervious cover types.

One sidewalk and small impervious features, such as cars and backyard
patios, were present; however, the categorization of roofs, roads, and drive-
ways included the majority of the impervious surface area.

Areas of interest covering all roofs, roads, and driveways within each
image were generated within IMAGINE. Figure 7.2 illustrates the mean and
standard deviation of the digital numbers for each cover type in the 0.1 m
GSD data. The trend in spectral variability was similar for all of the GSDs,
with lower variability in roads than in either roofs or driveways. The
variability in the driveways was likely related to the presence of both
asphalt and concrete construction; variability in the roofs due to the varying
colored shingles.

7.2.4.3 Evaluation with SAS Software

Multivariate and univariate ANOVA were used to determine if there were
statistical differences between roofs, roads, and driveways based on fractal
dimension, intercept, or R?. Since the generation of the fractal dimension
variables is based on a neighborhood, the FD for a single pixel is related to
that of its neighbors. Analysis was performed using 100 randomly selected
pixels to reduce the likelihood of violating assumptions of statistical inde-
pendence. Additionally, selecting a very large number of pixels may have
led to challenges in distinguishing between statistical and significant differ-
ences. With nine input images and output files generated using three win-
dow sizes and three pixel-DN ratios, there were 81 output datasets created.
Pixel size, window size, and pixel-DN ratios were considered separately to
avoid different factors confounding the potential differences in cover type,
which generated an enormous number of comparisons. Because the ana-
lyses used the same model with the same size datasets, only P-values are
reported to simplify the output. Given the purpose of the analysis—that is,
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determining if there are differences between the cover types—the F-statistic
would not have provided significant additional information.

7.2.4.4 Visual Assessment

Statistical analysis cannot capture all practical issues associated with data
generation. To complement the statistical assessment, the fractal output was
also visually interpreted.

7.3 Results
7.3.1 Overview

The triangular prism algorithm to calculate fractal dimension was applied to
each of the nine images using three different local window sizes and three
different pixel-DN ratios. The output from the algorithm included fractal
dimension, as well as y-intercept and R* values from the linear regression.
Because the results attained were similar for the two study sites, the results
presented focus on analysis from the study area with five altitudes.

Table 7.1 illustrates the statistics generated using 100 pixels drawn ran-
domly from each of the impervious cover types in the output layers of the
0.2 m GSD imagery, calculated using a 65 X 65 pixel window. The trends
shown in this table are similar to those seen in all data layers; for example,
the differences between the mean fractal dimension for each cover type
were small when compared with the standard deviation. Another trend
was that increasing the pixel-DN ratio decreased the derived fractal dimen-
sion, while increasing the intercept values. The statistics shown in Table 7.1
also give an indication of the general tendency of the R* values. While there

TABLE 7.1
Example Statistics for 0.2 m GSD Image Generated Using a 65 X 65 Pixel Window

. Driveway Road Roof
Pixel-

DN Ratio Mean SD Mean SD Mean SD

Fractal dimension 0.1 2.61 0.14 2.53 0.07 2.64 0.09
1 2.38 0.12 2.30 0.05 243 0.08

10 2.06 0.04 2.04 0.02 2.09 0.03

Intercept 0.1 9.23 0.57 8.84 0.36 9.74 0.50
1 11.89 0.89 11.20 0.45 12.46 0.61

10 13.69 0.44 13.38 0.18 14.00 0.35

R? 0.1 0.97 0.02 0.97 0.02 0.97 0.02
1 0.98 0.01 0.99 0.02 0.98 0.03

10 0.94 0.03 0.95 0.03 0.95 0.03
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was some variability depending on the pixel-DN ratio, 99% of the R* values
were above 0.70 and over 90% of the R? values were greater than 0.90.

7.3.2 Statistical Evaluation of Fractal Dimension

Determining if different impervious cover types generated statistically diff-
erent fractal dimension was addressed using multivariate analysis of vari-
ance tools in SAS software. An overall significance level of 0.05 was selected,
with the Bonferroni method used to decrease the significance level when
considering univariate and pairwise comparisons. In all cases, the overall
multivariate analysis of variance showed significant differences (P < 0.0001)
between the three cover types. Based on this, overall univariate analysis was
performed (summarized in Table 7.2). This analysis showed that regardless
of pixel size, window size, or pixel-DN ratio, there are generally differences
between the three cover types based on fractal dimension or intercept.
Because the overall comparisons showed differences in the three types of
impervious cover, pairwise comparisons were performed. Given the trend
for the R* values not to be significantly different, the pairwise analysis
focused on separation based on fractal dimension or intercept values. In
only one case (road vs. driveway in 0.1 m imagery with 17 X 17 window)
did the pairwise multivariate analysis of variance show insignificant
differences (P =0.03). Tables 7.3 and 7.4 illustrate the univariate pairwise

TABLE 7.2

P-Values for Univariate Comparison of Driveway vs. Roof vs. Road; Significant
Differences Where P-Value <0.05/9 = 0.006 and Pairwise Multivariate
P = 0.000 Except When Noted

Pixel Ratio = 0.1 Ratio = 1 Ratio = 10
Size
(m) Window  FD Int. R? FD Int. R? FD Int. R?

0.5 65 X 65 0000 0.000 083 0.000 0.000 0.007 0.000 0.000 0.124
0.5 33 X33 0.000 0000 018 0.000 0.000 0.003 0.000 0.000 0.000
0.5 17 X 17 0.000 0.000 0.740 0.000 0.000 0.098 0.000 0.000 0.084
0.4 65X 65 0000 0.000 0.141 0.000 0.000 0468 0.000 0.000 0.122
0.4 33 X33 0.000 0.000 0818 0.000 0.000 0179 0.000 0.000 0.000
0.4 17 X'17 ~ 0.000 0.000 0.518 0.000 0.000 0.603 0.000 0.000 0.557
0.3 65X 65 0.000 0.000 0.005 0.000 0.000 0.000 0.000 0.000 0414
0.3 33 X33 0.000 0000 0920 0.000 0.000 0124 0.000 0.000 0.130
0.3 17 X'17  0.000 0.000 0.814 0.000 0.000 0.673 0.000 0.000 0.197
0.2 65X 65 0.000 0.000 0.028 0.000 0.000 0.031 0.000 0.000 0.008
0.2 33 X33 0.000 0.000 0014 0.000 0.000 0.006 0.000 0.000 0.004
0.2 17 X 17 0.000 0.000 0.002 0.000 0.000 0.020 0.000 0.000 0.002
0.1 65 X 65 0000 0.000 0.058 0.000 0.000 0.186 0.000 0.000 0.012
0.1 33 X33 0.000 0.000 0.014 0.000 0.000 0.047 0.000 0.000 0.835

0.1 17 x 17 0.000 0.000 0479 0.000 0.000 0.160 0.000 0.000 0.081

@ P-value for driveway vs. road = 0.03.
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TABLE 7.3

P-Values for Univariate Pairwise Comparison of Cover Type: 0.1 m Pixel

Ratio = 0.1 Ratio = 1 Ratio = 10

Window Comparison FD Int. FD Int. FD Int.

65 X 65 Driveway vs. roof 0.000 0.000 0.000 0.000 0.000 0.000
Driveway vs. road 0.024 0.000 0.000 0.000 0.000 0.000
Roof vs. road 0.000 0.000 0.000 0.000 0.000 0.000

33 X 33 Driveway vs. roof 0.000 0.000 0.000 0.000 0.000 0.000
Driveway vs. road 0.159 0.012 0.259 0.039 0.108 0.093
Roof vs. road 0.000 0.000 0.000 0.000 0.000 0.000

17 X 17 Driveway vs. roof 0.000 0.009 0.000 0.000 0.000 0.000
Driveway vs. road 0.044 0.001 0.629 0.011 0.328 0.144
Roof vs. road 0.004 0.000 0.000 0.000 0.000 0.000

comparisons for the 0.1 and 0.5 m imagery, respectively. These tables show
the trend that roofs and roads were generally separable, regardless of the
variable considered, while driveways were more frequently confused.

7.3.3 Visual Assessment

With nine image subsets, nine output variables, and three different window
sizes, the number of possible combinations for visualization was prohibi-
tively large to display them all. Figure 7.3 illustrates a subset of the results
generated using a 17 X 17 window with a pixel-DN ratio of 1. Figure 7.3a
shows the intensity from the 0.1 m input file; Figure 7.3b and ¢ show the
fractal dimension and intercept output, respectively, for the 0.1 m image;
Figure 7.3d and e show the fractal dimension and intercept output, respect-
ively, for the 0.5 m image.

TABLE 7.4

P-Values for Univariate Pairwise Comparison of Cover Type: 0.5 m Pixel

Ratio = 0.1 Ratio = 1 Ratio = 10
Window Comparison FD Int. FD Int. FD Int.
65 X 65 Driveway vs. roof 0.409 0.000 0.007 0.000 0.000 0.000
Driveway vs. road 0.000 0.000 0.000 0.000 0.000 0.000
Roof vs. road 0.000 0.000 0.000 0.000 0.000 0.000
33 x 33 Driveway vs. roof 0.005 0.000 0.000 0.000 0.000 0.000
Driveway vs. road 0.000 0.000 0.000 0.000 0.000 0.000
Roof vs. road 0.000 0.000 0.000 0.000 0.000 0.000
17 x 17 Driveway vs. roof 0.109 0.000 0.013 0.000 0.002 0.000

Driveway vs. road 0.000 0.000 0.000 0.000 0.000 0.000
Roof vs. road 0.000 0.000 0.000 0.000 0.000 0.000




Separating Types of Impervious Land Cover Using Fractals 135

FIGURE 7.3
(a) Emerge 0.1 m GSD image intensity, (b) fractal dimension from 0.1 m image
(continued)
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FIGURE 7.3 (continued)
(c) intercept from 0.1 m image, (d) fractal dimension from 0.5 m image, and
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FIGURE 7.3 (continued)
(e) intercept from 0.5 m image; output generated using a 17 X 17 window with a pixel-DN
ratio of 1.

7.4 Discussion
7.4.1 Statistical Evaluation of Fractal Dimension

The overall multivariate analysis of variance demonstrated that there were
significant differences between roofs, roads, and driveways considering FD,
intercept, and R* across the three pixel-DN ratios. Because the overall
multivariate analysis showed statistical differences, overall univariate and
pairwise multivariate analyses were performed. Table 7.2 summarizes the
overall univariate analyses and also indicates the single pairwise multi-
variate comparison that did not show statistical differences. This table
shows that in every example, the cover types were different based on the
fractal dimension values and, with the exception of one case, the cover types
were also separable based on intercept.

The pairwise univariate analysis showed that statistical distinction
between roofs and roads is generally possible regardless of the variables
or parameters considered, while separating driveways from roads or roofs
is often more difficult. Tables 7.3 and 7.4 illustrate that separation between
pairs of cover types was more challenging when calculation used the
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smallest-sized window. These tables also illustrate the trend that there were
some differences in separability of the cover types depending on both the
pixel and the window size used. Understanding these differences relied on
the visual assessment.

7.4.2 Visual Assessment

The results of the statistical analysis showed that the separation of cover
types was weaker when considering the smallest window size. The visual
interpretation provides a clue as to the reasoning behind this, as is illus-
trated in Figure 7.3. With smaller ground extents, the fractal algorithm is a
very effective edge detector. In small windows, the edges of both roads and
roofs are well defined using either the fractal dimension or intercept vari-
ables. In some cases, the edge distinction divided a roof into segments. The
fractal layers then saw these segments as sections of road or driveway. Ferro
and Warner [7] discuss similar challenges involving edges when incorpor-
ating texture in image classifications.

With larger windows, the edges of features such as roads and roofs
became less defined in the fractal dimension images, producing clusters of
pixels and leading to the objects appearing as a single unit. Studies have
shown that there is a correlation between the window size and the feature of
interest [1]; the challenge is finding the correct window size for a given
feature. Roads in the study area were ~7 m wide and were more defined in
the fractal layers in the 0.3 m imagery using a 33 X 33 (9.9 m) window or in
the 0.5 m imagery using a 17 X 17 (8.5 m) window.

A potentially confounding factor in the analysis was the seasonality of
the imagery. The imagery used in this analysis was collected during the
summer with full leaf-out conditions. The spatial characteristics of roads
and driveways were complicated by the presence of overhanging trees. In
several cases, the fractal dimension calculated using the smallest window
sizes led to confusion of roofs when trees were in close proximity. The larger
windows seemed less sensitive to this problem.

7.5 Conclusions

This project sought to evaluate if spatial complexity measures might pro-
vide a means to separate types of impervious land cover. In particular, the
use of fractal dimension calculated using the TPSA method was considered.
Fractal dimension is commonly calculated by taking a measure over a series
of scales, performing a linear regression, and considering the slope of the
line of best fit. Analysis for this project considered fractal dimension as well
as the intercept and the R* values from the regression.

The primary objective of this study was to consider the separability of
three impervious cover types commonly found in residential areas: that is,
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roads, roofs, and driveways. Overall and pairwise multivariate analysis
demonstrated that there were generally significant differences between the
three cover types. The visual interpretation provided clues about some of
the limiting factors in the separation of these cover types. With smaller
windows, the fractal dimension and intercept layers fundamentally
detected edges of features such as roads or driveways. Interestingly, it
appeared that the edge detection properties appeared to relate more
strongly to the number of pixels in the window rather than the GSD of
the pixels.
From the results, the following observations are noted:

e The multivariate statistical analysis showed differences in fractal
dimension for three impervious cover types.

» When cover types were considered on a pairwise basis, roofs and
roads were generally separable, while driveways were more fre-
quently confused.

* In a univariate analysis, samples were generally separable using
the derived fractal dimension or intercept values.

The availability of a multialtitude dataset allowed for an assessment of the
impact of the image scale on the generation of fractal dimension. While
statistical separability of the three cover types under analysis was noted for
most of the images, visual analysis showed that there were distinct differ-
ences. For example, it was observed that at particular scales, both fractal
dimension and intercept values function as edge detectors. This effect was
most apparent when considering the roofs using windows that corre-
sponded to a smaller spatial extent. Defining the appropriate pixel and
window size for applying such analysis appears to be dependent on the
size of the features.

This book describes many different research projects aimed at delineating
impervious regions. This project sought to take the next step and looks at
separating types of impervious land cover. The analysis described demon-
strated that there are statistical differences between fractal dimensions
calculated for different classes of impervious land cover. The challenge
remains to translate these statistical differences into practical advantage
through classification.
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8.1 Introduction

Urban environment is by far the most complex one that may possibly
appear in remotely sensed images, and its analysis requires extracting a
wealth of information from the sensed data. On the one hand, identification
of very different land-cover classes is required. On the other hand, spatial
patterns should be considered to associate land-cover classes to land-use
classes and to discriminate between natural and artificial objects. As a result,
any single sensor may contribute to urban remote sensing, but no one is in
itself sufficient to capture all the available information. In this chapter we
therefore deal with data fusion, that is, the idea of using datasets coming
from different sensors, to identify impervious surfaces. To limit the scope of
our discussion, we focus on synthetic aperture radar (SAR) and optical data,
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which is at the same time our field of experience in the area and one of the
most relevant cases, because of, if nothing else, the sheer quantity of data
available.

SAR may be considered as the sensor that conveys the greatest amount of
information about two- and three-dimensional structural properties of
urban landscape features in addition to dielectric properties of the materials
that compose urban objects. Unfortunately, SAR images are obtained at a
single wavelength, and thus no spectral discrimination of urban materials is
usually possible; some limited classification capabilities may be achieved
exploiting polarization [1] and the characterization of different scattering
effects, which the latter permits. Thus, SAR data may be useful for spatial
(pattern) characterization, but they are almost useless for spectral (compos-
ing matter) discrimination. This makes it complicated to discriminate
impervious surfaces, or to characterize impervious surface fraction at a
subpixel level, relying on SAR data alone.

Impervious surface mapping at the regional or country level is not
required only to precisely characterize materials in urban areas, but gener-
ally speaking, to identify human settlements all over the earth surface, and
to discriminate between artificial and natural land-use classes. Even
the simple task of detecting where these settlements are located may be
difficult to realize, and sometimes it may even be impossible when using
optical sensors alone, for example, in some permanently cloud-occluded
tropical areas.

Moreover, impervious surfaces are generally related to man-made struc-
tures, like streets and buildings, and other artificial features of the land-
scape. Because of their properties, radar images appear to be the best
candidate for structural characterization of artificial objects and show their
potential even at the current, somehow coarse, resolution of satellite SAR
sensors. The latter limitation will be relieved by the forthcoming satellite
SAR instruments, with significantly improved spatial resolution, down to
tens of centimeters [2,3]. This will be certainly appealing where the scope of
the analysis is the complex urban environment. Thus, the research on radar
sensing of impervious surfaces is striving in a preparatory effort in sight of
the new perspectives and issues that higher resolution data will open.

So far, the studies on SAR urban remote sensing have focused on the
extraction of city boundaries using texture information [4] and extraction of
different land-use classes by means of adaptive approaches [5]. Moreover,
with the more recent satellites (ENVISAT and RADARSAT-1) the possibility
to change the radar viewing angle was introduced, and some analyses
focusing on the variability of this parameter and its influence on impervious
surface mapping were carried out as in Refs. [6,7]. However, the results are
inferior to optical data analysis.

Therefore, recognizing the limits of SAR data and the fact that many
optical sensors are available, and also considering the important structural
information that SAR can convey, extensive research has been dedicated to
data fusion between SAR and optical data such as those from Landsat TM,
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IRS, ASTER, and SPOT sensors for better classification and feature enhance-
ment in urban areas [8]. For example, the higher discriminability of imper-
vious surfaces using spectra in ETM+ images is complementary to the
better geometrical characterization of artificial targets and patterns in SAR
data. Thus, if SAR data may more easily provide information on structure
geometry, stable and oriented features, and patterns of settlement struc-
tures, optical images are more suitable for land-cover discrimination and
spatial analysis with the finest detail. This has been recognized in a line of
research very active today, which jointly exploits spaceborne measure-
ments in the microwave and optical frequency regions for mapping imper-
vious areas [9,10]. The huge amount of archived, past imagery by both
sensors is indeed far from being completely analyzed and carries a wealth
of information about the evolution of human settlements, still to be fully
considered.

This work is aimed at demonstrating that fusing SAR and optical data
makes it possible to achieve very interesting results for impervious area
mapping, by exploiting spatial patterns on the one side and spectral pat-
terns on the other. In turn, this leads to a substantial improvement in the
case of interpretation and accuracy of final maps with respect to using
optical or SAR data each considered alone.

8.2 Impervious Area Mapping in Challenging Environments

In order to evaluate the mapping procedure using data fusion in “stand-
ard” European or U.S. city environments, an example in this chapter is
provided for informal settlement mapping. “Informal settlements’” are
usually defined as dense settlements comprising communities housed in
self-constructed shelters under conditions of informal or traditional land
tenure [11]. These areas are characterized by rapid, unstructured, and
unplanned development [12]. Detecting informal settlements is the spotlight
for various initiatives, for example, European Global Monitoring for Envir-
onment and Security (GMES) project and the humanitarian and development
aid policies of the United Nations. Unfortunately, for the developing coun-
tries, this kind of data is unreliable, obsolete, or just simply nonexistent [13].
Usually the only data available for third world cities are limited to outdated
topographic maps and National Census population data, whose accuracy
and suitability are widely variable. When no other data are available for this
kind of analysis, one solution is to use remote sensing imagery as the primary
data source and geographic information systems (GIS) plus secondary data
sources in the key role of providing a framework for spatial analysis of
remote sensing data [14]. However, due to the microstructure and instability
of shape of the informal settlements, the detection is substantially more
difficult than in formal settlements [15]. Hence, more sophisticated data
and methods of image analysis are necessary.
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8.3 Methodology

The methodology used in this work is based on texture analysis of both SAR
and optical remotely sensed images for detection and exploitation of spatial
patterns. Then, a joint classification of the extracted spatial features, option-
ally together with the original spectral features, is carried out. The selection
of the best feature set for the classifier is ruled by the mapping legend and
the training set via the so-called fusion rule base. In order to clarify the
overall work flow of the procedure, a graph is presented in Figure 8.1. In
Section 8.3.1, first the complete procedure is discussed, then a more detailed
description of each processing step is offered.

8.3.1 Overall Procedure

As shown in Figure 8.1, the whole procedure flow may be summarized in
four steps.

1. SAR and optical data, properly coregistered, and a training set,
with associated mapping legend, are considered.

2. According to the problem considered and thus the most suitable
mapping legend level for the problem at hand, a selection of the
spatial and spectral features to be classified is performed following
the rules in — the fusion rule base (see Section 8.3.2). This rules set
implements the a priori knowledge about urban area mapping at
different geographical scales and automatically selects the most
useful subset of features for the subsequent classification step,
some of them already available, others to be provided through
automatic preprocessing of the data in the next step.

3. If spatial analysis is required, and texture features are to be com-
puted, then the choice for the best parameter set for texture

SAR data
Spatial
analysis

Training set and
urban legend Fusion MRE
rule base classifier

Spatial
analysis

Optical data

FIGURE 8.1
Conceptual work flow of the overall procedure proposed in this chapter.
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computation is automatically performed starting from the training
set, using a semiautomatic approach proposed in Section 8.3.3.

4. Finally, the spatial features (if any), the spectral features, and the
original data (if considered by the selected rules) are fed into a
spatially aware classifier, based on a Markov random field (MRF)
structure, proposed in Section 8.3.4.

8.3.2 Fusion Rule Base

Urban areas are required to be analyzed, as discussed in Section 8.1, by a
suitable mix of spectral and spatial features. For instance, texture features
may capture the spatial patterns of the scene, but they generally can be
determined only at a coarser resolution than the original data. This means
that boundaries between neighboring objects are blurred in texture maps,
and patterns are more relevant if land-use rather than fine-scale land-cover
mapping is considered. For instance, residential and industrial areas may be
easily discriminated at tens or hundreds of meters, examining building
clusters, while a finer resolution may be misleading. On the other hand,
land-cover maps (with classes such as roof, pavement, grass) are better
achievable using the finest ground resolution available, that is, considering
the original data, alone or together with textures.

There should therefore exist a set of relations, or rules, to determine the best
set of features to be used in a mapping procedure, according to the map legend
tobe considered. This rule set, susceptible to formalization, constitutes a fusion
rule base that may be constantly updated in further researches while allowing
to conserve the overall structure of the procedure proposed in this work.

The currently implemented rules reflect the very basic consideration in
the preceding paragraphs, which in turn depends on the choice of the data
studied in this work. It should be stressed that these rules may become
questionable if very high-resolution airborne SAR and optical sensors are
considered, while they are acceptable for data recorded by current, coarse
resolution satellite sensors. Such rules are

1. Land-cover mapping does not require spatial analysis and exploits
the original data, as long as the “salt and pepper” classification
noise is reduced by the use of a “spatially aware” classifier, like
the one described in Section 8.3.3 and employed here.

2. Land-use mapping requires spatial analysis alone, once a way to
select the best feature set is implemented, as described in Section
8.3.1.

8.3.3 Spatial Analysis with Multiple-Width Textures

When dealing with urban areas in different parts of the world, one point
that is really interesting is that they have a very different structure, and this
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means, from a remote sensing standpoint, a strong need for a resolution-
dependent approach. Formal and informal settlements have different spa-
tial patterns, and the ability to somehow “guess” the best feature for
mapping a given area is therefore one of the most challenging and interes-
ting research themes. Since, as recalled earlier, SAR images are more
related to geometric properties of the scene than any other sensor, their
analysis is likely to allow the extraction of more information about human
settlement patterns than using any other source of information generated
from satellites.

Even though several methods have been proposed in technical literature
to provide a measure for the spatial relationships among neighboring
pixels, the most widely successful is the co-occurrence texture analysis [16].
Co-occurrence texture measures are computed starting from the
co-occurrence matrix. A few parameters determine this process, namely the
distance between the two locations to be jointly considered the direction of
such distance and the width of the window used for computation. The
distance provides an important means to discriminate among textures
based on the element spacing. Direction is especially important in case of
anisotropy in the texture [17]. Finally, the window width is usually neglected.

Remote sensing images, however, usually reveal only very compact pat-
terns. Inside an urban area, for instance, most common distances are on the
order of meters, so that basic texture elements are located in adjacent pixels
for most satellite images. Moreover, although many environments do have
preferred directions, such anisotropy is often immaterial for very fine tex-
tures and small-scale texture patches. Sometimes no clear texture segment
can be seen, and patterns are continuously, smoothly changing. So, the
co-occurrence window width remains the only really important parameter.
The window width defines the area around a pixel where we assume that
texture patterns are statistically stable. In turn, this number needs to be tied
to the mean physical dimension of the textured areas we are looking for.
This explains why this parameter has been found to be the most important
one in urban remote sensing [18] and the only parameter that is strongly
related to the spatial patterns of the image.

A methodology for textures and multiple widths has been proposed in
the same work and was labeled multiscale texture fusion. The approach is
based on a supervised neural classification, fed by a feature extraction step.
This step exploits the same training set as the classifier, and it is based on
the computation of a discrimination index, the histogram distance index
(HDI) [19]. The whole set of textures computed from the co-occurrence
matrix for different values of the parameters are considered, and the subset
that is highest in HDI ranking is used as an input to a fuzzy ARTMAP
multiband classifier [20]. Adaptive resonance theory (ART) networks,
basically introduced for solving pattern recognition problems, have indeed
shown to be very efficient in multiband remote sensing data analysis (see
also Ref. [21]). This is particularly so when we deal with bands whose
statistical properties are very different, as is the case with texture
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measures. ART networks store in their memories information about the
training samples and compare test patterns with these memories. Any
match assigns the pattern to an output category, for example, a land-use
class. We proved the existence of a strong correlation between the HDI
rank order and the progression of the overall accuracy values after classi-
fication. In particular, the major aim of this step is to provide the minimum
number of texture measures with fixed or variable width, which maxi-
mizes the classification performance.

8.3.4 Markov Random Field Classifier

In this work an MRF approach is used, because of its capability of dealing
with multiple images, even with very distinct statistics, and the possibility
to easily adapt it to different inputs. This is why MRF is widely used in data-
fusion methodologies, where more datasets, coming for instance from radar
and optical sensors, are used to classify the same scene [22]. MRFs are also
capable of considering spatial relationships among neighboring pixels in the
classification framework. This makes an MREF classifier a ““spatially aware”
one, capable of fully exploiting the ground resolution of the data while
greatly reducing the typical salt and pepper classification noise of per-pixel
classification algorithms.

To briefly summarize the MRF framework, let us consider a set of features
or images coming from n sensors; then, let us consider the M X N image
acquired by sensor r as made up of MN pixels or feature vectors X,(1,1), ...,
X,(M,N),r=1,2, ...,n,where X,(i, /) = (x,(i,, 1), ..., %, j, B;)) and B, is the
number of spectral bands or features for sensor r. We assume that K classes
1, €2, ..., Cx are present in the images with prior probabilities P(c;), P(c2),
..., P(ck). Let us denote with C(j, j) the class for pixel (i, j); we call X, the set
of pixels of the whole image X, =1{X,(i, j); 1 <i <M, 1 <j < N} and with
C={C@, j), 1 <i<M,1<j< N} the set of labels for the same scene; in
practice for a given pixel (i, j), C(i, j) € {c1, c2, ..., cx}-

If we call P(X, ..., X,|C) the conditional probability density of feature
vectors X3, Xy, ..., X, given the scene label set C, and with P(C|X;, ..., X,,)
the posterior probabilities, the classification task consists of assigning each
pixel to the class that maximizes the posterior probabilities. Naturally a
relation exists between the data (measurements or features) and the prior
information, which can be represented in a Bayesian formulation as

P(Xi, ..., X,|C) P(C)
P(X1, ..., X»)

P(C|IXy, ..., Xn) = (8.1)
where P(C) represents the prior model for the class labels.

Thus, we want to maximize the likelihood function L(X;, ..., X,|C) =
P(X41|0)*, ..., P(X,,|C)*" P(C) where ,, 0 < a, < 1 is the reliability factor for
Sensor 7.

Furthermore, denoting G;; the local neighborhood of pixel (i, j) we can
write
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P(C(i, j)|C(k, D);{k, I} # {i, j}) = P(C(i, j)|C(k, I);{k, 1} € Gy)
_ 1 uoyr
=e (8.2)

where
U is the so-called energy function
Z is a normalizing constant factor
T is a temperature term often used in statistical physics

In our model, we always consider a second-order neighborhood, that is, the
eight pixels closer to each single pixel of the image. If we want to maximize
P(C(, j)|C(k, I); {k, I} € Gyj), we find that we need to minimize U(C), where
U(CG, ) = Sec, BICG, ), Ck, ) and I(CG, ), Ck, ) = -1 if C(, ) = C(k,
D), 0if C(i, j) # C(k, I).

To perform the classification, we need to minimize U(Xjy,..., X,, C) = a5
Uspect (Xs) + Usp(C), where Uy, is given by the previous equation and Uspectr
is defined as follows.

. .y Bs 1 . _ .
uspectr(XS(lr ])r C(l/ ])) = ? In |2’1T2k‘ +§(Xs(l/ ]) - /-Lk)TEk 1(Xs(l/ ]) - /-'Lk) (83)

where
>k and p are, respectively, the class-conditional covariance matrix and
mean vector for class k
B, is the number of spectral bands or features for source r

Many algorithms are available for MRF implementation, but they are
often demanding in terms of CPU-time. A simple but still effective one is
iterated conditional mode (ICM), used in this work, which allows to reach
a local minimum of the energy function very quickly. The problem of ICM is
that it may get trapped in a local minimum, but since in this work the
starting point is an already good neural network classification, convergence
is empirically assured.

8.4 Experimental Results

Experimental results are offered in this section for two very different
examples of human settlement mapping. The first one is a problem of
formal vs. informal settlement mapping, which implies a land-use legend,
where spatial patterns are more relevant than spectral features. The second
one is instead a more standard impervious area mapping on a European
town, with limited stress on spatial patterns and more importance on built-
up area/vegetation discrimination. Figure 8.2 shows how the general
framework depicted in Figure 8.1 applies to the two different mapping
scenarios.
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FIGURE 8.2
Instances of the framework of Figure 8.1 applied to: (a) informal vs. formal settlement mapping;
(b) settlement detection and impervious surface mapping.

8.4.1 Al-Fashir (Sudan)

As outlined in Section 8.2, SAR and optical data analysis for impervious
surface mapping in informal settlements stretch the scope of the current
methodologies for urban mapping, developed for industrialized countries
and mostly European and U.S. urban areas. The test area for this work is the
area around the town of Al Fashir, the largest human settlement in the
North Darfur region in Sudan. SAR data on Al Fashir were recorded by
ASAR on 26 July and 13 August 2004. In that period, the war in progress in
the area and the consequent famine produced the sudden raising of a
huge tent camp located northwest of the main town area. The area was
therefore the target of a wide effort of humanitarian aid, and vast amount of
remotely sensed data were recorded to help rescuers and NGO officers.

Figure 8.3 shows the mapping results obtained using both ASAR datasets
and applying to them the previously described texture analysis. Best per-
formances were obtained using two sets of textures (mean, second moment,
and variance or mean, entropy, variance, and dissimilarity), computed
using a 21 X 21 window, as it was found viable in many similar cases
[5,23]. The results of the second choice are provided in Figure 8.4b, next to
either of the two original images. The tent camp is the low brightness area
northwest of the main urban core, and it is actually partitioned into two
main tent blocks.
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@) (b) (©

FIGURE 8.3 (See color insert following page 292.)

Classification maps for SAR data classification of human settlements in the area around the
town of Al Fashir (Sudan). Three land-use classes are used: informal settlements (light green),
formals settlements (red), rocks and bare soil (yellow). (a) Original SAR data with the tent camp
highlighted by a green circle; (b) map from classification of SAR textures; (c) map from joint
classification of SAR and SPOT textures.

Figure 8.3b shows that texture analysis may provide a first discrimination
between formal and informal settlements, but it shows also that spatial
analysis at a single frequency does not allow discarding uninteresting areas
outside human settlements. There are indeed rock formations and a bare soil
area with a radar backscattering very similar to that of some parts of these
settlements. A certain amount of misclassification is therefore reported, testi-
fied by the red and green ““blobs”” all around the map, and especially in the top
right area, where no settlement can be found, only rocky hills.

However, acquisitions from the SPOT sensor were also available on this
area, in particular SPOT-5 images with 2.5 m spatial resolution was acquired
on 14 November 2004. According to the fusion rule base, texture features
from both SAR and SPOT data were considered and jointly classified.
A comparison between Figure 8.3b and c allows understanding the advan-
tage of using both information sources. As a matter of fact, the misclassifica-
tions have been greatly reduced and better delineation of both the formal
and the informal settlement areas is achieved. Misclassifications with rock
soil still persist, but they have been dramatically reduced.

. 86.79% | 154,970 7,159 | 16,431 l 74.61% (133,219 | 42,446 2,895
89.91% | 29,913 (554,474 32,320 97.65% 3,711 602,221 | 10,775
86.90% 0 1,930 | 12,803 80.67% 0 2,848 | 11,885
83.82% | 98.39% | 20.80% 97.29% | 93.00% | 46.51%
Overall accuracy: 89.17% Overall accuracy: 92.26%
(@ (b)
FIGURE 8.4

Confusion matrices for the maps. From top: structured settlements, desert, unstructured
settlements.
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@ (b) (c)

FIGURE 8.5
Urban extent using ASAR data, from the map in Figure 8.3(b), compared with (b) GRUMP and
(c) AFRICOVER urban extents for the town of Al-Fashir (Sudan).

Quantitatively speaking, the confusion matrices for the two maps in
Figure 8.3 are reported in Figure 8.4. In both cases the overall accuracy
values are good (around 90%), and the class accuracy values show a really
good discrimination between structured and unstructured human settle-
ments (following the legend in Figure 8.4, they are represented by red and
green colors, respectively). One may comment that a suitable texture analy-
sis, coupled with a spatially aware classifier, allows exploiting spatial pat-
terns to delineate different human settlements. However, a better
discrimination is obtained by a joint exploitation of optical and radar data.

Another interesting comparison for this particular example may be
obtained comparing the urban area extent found by means of the procedure
adopted in this research work with the urban extents in global datasets,
such as those by the Global Urban-Rural Mapping Project (GRUMP, [24])
and the AFRICOVER initiative [25], proposed in Figure 8.5.

Apparently, the urban extent is widely overestimated in the GRUMP
database, while our result matches very well the AFRICOVER map, obtained
using Landsat data, that is, optical data with a ground spatial resolution
comparable with the ASAR data used in this work. This in turn means that,
as far as urban extent delineation is concerned, SAR data allow to obtain
results similar to those obtained using optical data, which is good news for a
better mapping of urban areas in the African continent. The comparison was
made to show that existing spatial databases contain information that is either
too coarse for real human settlement mapping or not sufficiently detailed as
far as the settlement typology is concerned. Both kinds of information might
instead be extracted from the joint use of SAR and optical data, as shown here.

8.4.2 Pavia (ltaly)

The second test site for this work is the town of Pavia, northern Italy, which has
already been widely analyzed in many works, not only by our research
group [26]. In this area, a relevant number of SAR scenes were acquired by
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sensors on board ERS-1/2, RADARSAT-1, and ENVISAT. Furthermore, good
knowledge of the area is available, thanks also to a detailed ground truth,
manually extracted from very high-resolution images of the area. Such ground
truth delineates the impervious surfaces (red) against agricultural surrounding
fields (green) and the Ticino river (blue) flowing south of the town.

In this work, several Landsat scenes of the city were collected to perform
a joint classification based on the MRF model. The considered optical
dataset is made up by two of these images, acquired on 7 April 1994 and
8 October 2000, which were added to the SAR dataset, made by two single-
polarization Precision Mode ASAR images, recorded on 25 November 2002
and on 8 December 2002, and one ERS-2 image acquired on 13 August 1992.
The overall considered area covers an 8 X 8 km? square-shaped area around
the town.

According to the fusion rule base, the original data were considered and
no spatial analysis was performed. Both a single-source and a joint classifi-
cation of radar and optical data were instead performed using the previ-
ously mentioned neuro-fuzzy classifier, to provide a first analysis of the
classification accuracy available to use these classification maps as a priori
information for the classifier based on the MRF model (see Section 8.3.2).

Table 8.1 compares the overall as well as the single-class accuracy values
of the fuzzy ARTMAP NN (A) and MRF classifier (M) maps considering
some combinations of the available SAR data.

Table 8.2, instead, shows the accuracy for any combination of the Landsat
datasets using the same classifiers (ARTMAP and MRF). Both tables show
that the overall accuracy values improve with the second approach.

Finally, Table 8.3 shows the classification results of the whole available
dataset considered together again using both classifiers. In all of these
classifications, the choices for the parameters in Equation 8.3 were as

TABLE 8.1

Comparison of User Class and Overall Accuracy Values (Percentages) for NN
and MREF Classification of Radar Data

Images Water Vegetation Urban Areas OA
13 August 1993 (A) 75.25 88.13 52.6 83.2

13 August 1993 (M) 94.31 85.77 65.57 83.35
25 November 2002 (A) 56.48 71.37 56.33 69.06
25 November 2002 (M) 45.29 72.32 61.83 70.31
08 December 2002 (A) 29.73 72.96 40.59 67.72
08 December 2002 (M) 58.79 77.18 46.6 72.76
25 November + 08 December (A) 61.58 80.05 56.44 76.54
25 November + 08 December (M) 45.07 81.41 60.86 77.87
25 November + 08 December + 62.9 91.48 61.41 86.89

13 August (A)
25 November + 08 December + 46.75 95.98 63.07 90.53

13 August (M)
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TABLE 8.2

Comparison of User Class and Overall Accuracy Values for NN
and MRF Classification of Optical Data

Images Water Vegetation Urban Areas OA
07 April 1994 (A) 82.88 60.29 91.26 64.85
07 April 1994 (M) 90.81 60.78 90.73 65.39
08 October 2000 (A) 91.13 65.41 89.12 69.11
08 October 2000 (M) 91.25 74.06 87.71 76.24
07 April + 08 October (A) 94.31 73.61 88.46 76.03
07 April + 08 October (M) 76.77 79.6 89.24 80.79

follows: « is the overall accuracy of the ARTMAP classification, 8 =1.5, and
a second-order neighborhood and a pixel threshold percentage of 5% were
used. With these parameters the ICM algorithm reaches the convergence in
two, three, or at most in four iterations.

Apart from accuracy values, a visual analysis of the maps in Figure 8.6 also
shows that the MRF approach results in, sometimes, only slightly but in any
case higher overall accuracy for the classification, and in particular the urban
areas are better recognized. It is important to remark here that we also
considered, as a priori information for the MRF model, the classification
obtained with spatial fuzzy ARTMAP using a spatial window of 3 X 3 pixels
around each pixel of the image [20]. The classification results of this approach
for the classification of the three SAR images are shown in the last two lines of
Table 8.1, while either of the two classification maps is shown in Figure 8.5f.

This approach, tested on the whole dataset, allows achieving the same
classification results, but with the MRF procedure terminating after just one
iteration. Thus, it results in a faster classification.

Although this is not surprising, still it is to be noted that in the Pavia case
the joint classifications improve the overall accuracy for both classifiers. This
is probably due to the usual “averaging’ effect over several, noise-plagued
images. Generally, the better detected class is vegetation, regardless of the
number of images input; the improvement in the overall accuracy springs
from various fluctuations in the class accuracy for “water” and “urban,”
although neither of those shows a clear trend toward improvement when

TABLE 8.3

Comparison of User Class and Overall Accuracy Values for NN and MRF
Classification of the Joint Radar and Optical Datasets

Images Water Vegetation Urban Areas OA
ERS + ASAR + LAND 08 October (A) 87.09 69.24 87.27 72.01
ERS 4+ ASAR + LAND 08 October (M) 48.99 82.53 84.14 81.94
ERS + ASAR + LAND 21 June (A) 60.06 929 67.67 90.14

ERS + ASAR + LAND 21 June (M) 54.07 98.23 71.58 93.71
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FIGURE 8.6 (See color insert following page 292.)

Classification maps of the three SAR available images obtained with ARTMAP (a) and with
the MRF approach (b); the land-cover ground truth used to evaluate classification results
(c); classification maps of the joint classification of the LANDSAT image of 21 June and the
three SAR images with ARTMAP (d); and MREF (e); classification map of the three SAR available
images obtained with spatial ARTMAP (f).

the number of jointly classified images increases. Notwithstanding the
limited class accuracy, both the river and the urban area are well outlined,
especially when MREF classification is concerned. This suggests that the
spatial dependency need not be introduced before classification, and a
spatial postprocessing, possibly heavier than the current one (e.g., morpho-
logical closing), could serve the purpose of increasing the overall accuracy.
As a general comment to the results, the joint classification of LANDSAT
and SAR data provides a better accuracy in the characterization of urban
areas with respect to the use of SAR data alone. These accuracy values are
comparable with the ones obtained from the classification of Landsat data
alone; but in the joint classification of the two sensors we obtained a better
discrimination of all the classes. This reflects the original idea that the use of
more than one sensor in land-cover mapping and the use of an MRF model
may improve the spectral discrimination between impervious and natural
surfaces, using spatial analysis.

8.5 Conclusions

This chapter deals with the joint use of radar and optical data for identi-
fication of human settlement. While the topic is not completely new,
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a complete framework for a more complex task than simple urban area
detection has been proposed. Spatial analysis, for instance, has been widely
used for improving SAR interpretation in urban areas, but a methodology to
adapt the spatial analysis to the impervious surface legends has not been
provided in technical literature so far. Similarly, the use of texture in both
SAR and optical data for formal vs. informal settlement discrimination is a
new research area, still to be further investigated.
The main achievements of this work are therefore listed as follows.

1. This work provides the framework for a semiautomatic procedure
for human settlement mapping, able to deal with spectral and
spatial features and apt to the goal of providing maps at different
geographical scales of interest and corresponding land-use
legends.

2. The proposed spatial analysis, initially developed for SAR data,
was validated using also optical data and shows therefore to
be equally valid for data at different wavelengths. The spatial
features of human settlement can also be used to discriminate
between formal and informal settlements and achieve a better
accuracy in land-use mapping of the anthropogenic landscape.
However, as noted earlier, more research on this topic is needed.

3. From an operational point of view, the evaluated experiments
show that the recently proposed MRF classifier provides better
accuracy values than the originally used neuro-fuzzy classifier and
similar capability to cope with multiple inputs, each one with
possibly different statistics.

The possibility of “rapid mapping” following the procedure of this work is
therefore justified on the one hand by the use of the semiautomatic meth-
odology based on spatial and spectral features, which are very easy and fast
to compute and to select. On the other hand, the results, while interesting,
do not match the requirements of precise and ready-to-market mapping
techniques, which are basically based on manual extraction/correction of
the maps. Therefore, applications that may benefit from the proposed pro-
cedure are mainly “rapid mapping’ ones, like for instance change detection
or land-use mapping for disaster or relief management.
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9.1 Introduction

Accurate and up-to-date information regarding road location and condition
is essential data for transportation infrastructure planning and management.
This information is used for a variety of purposes including traffic safety,
construction projects, traffic engineering studies, and evaluation of main-
tenance needs [1,2]. Additionally, spatially accurate and up-to-date trans-
portation networks are vital in ambulance and rescue dispatch emergency
situations [3,4]. However, current road infrastructure databases are often
outdated due to the dynamic nature of road networks where roads deteri-
orate or are improved and reconstructed [4,5]. In other cases, infrastructure
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databases may not even exist at all. This is particularly true for areas
experiencing rapid road network expansion [3].

Currently, one of the most common methods of gathering transportation
infrastructure information is global positioning system (GPS) mapping [3].
This method, which is the primary method used by the U.S. Department of
Transportation (DOT), has been supported by the increasing availability
of quality GPS technology [1]. However, GPS methods, along with other
data collection methods, which include manual methods, digitization of
aerial photographs, and video or photo-log vans, are all methods that
require every road within a DOT’s jurisdiction to be field-visited to obtain
accurate information. These methods are effective, but are also inefficient
since significant amounts of time and resources are required to cover even
a minor amount of roadway [1,3,6]. This is problematic since both state
DOT and local areas are responsible for significant street network
systems. Iowa, for example, has a street system consisting of ~110,000 linear
miles [1].

As a result of these issues, the USDOT is interested in identifying alter-
native technologies, such as remote sensing, that could be used along with
current methods to meet road infrastructure informational needs more
effectively [3]. To promote research in this area the USDOT, Research and
Special Programs Administration (RSPA), and the National Aeronautics
and Space Administration (NASA) collaborated to establish the National
Consortia on Remote Sensing in Transportation in early 2000 with funding
under the Transportation Equity Act for the twenty-first century [6]. The
goal of this consortium was to identify alternative technologies, such as
remote sensing, that could be used along with current methods to meet
road infrastructure informational needs more effectively [3]. Studies that
specifically attempt to extract road information using multispectral data
have been conducted [7-10]. Although multispectral imagery continues to
be among the most widely used remote sensing data, hyperspectral imagery
is maturing into one of the most powerful and fastest growing sources
of remotely sensed information [11]. Studies have also shown good results
from hyperspectral data for road feature extraction [11,12]. Further,
studies have shown relationships between spectral response and road
deterioration [13].

The goal of this study was to assess the potential of AVIRIS hyperspectral
remote sensing data for use with transportation infrastructure with different
classification methods. Hyperspectral remotely sensed data were chosen for
this study because of the availability of high spectral and spatial resolution.
This choice was supported by previous studies that conclude that hyper-
spectral data have the highest potential for mapping the complex urban
environment due to the fact that man-made features are often too small for
sensors with lower spatial resolution to detect [14,15]. Additionally, these
features are often too compositionally similar in respect to other man-made
materials for sensors with lower spectral resolution to discriminate between
them [14,15].
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9.2 Data

The particular data chosen for this study were hyperspectral imagery
acquired in the spring of 1999 over Shelton, Nebraska (Figure 9.1) by the
high-resolution Airborne Visible Infrared Imaging Spectrometer (AVIRIS)
sensor available from the Jet Propulsion Laboratory at the California Insti-
tute of Technology. The Shelton Nebraska site was chosen for this study for
three reasons: (1) the location represents one of the few areas in the Midwest
in which data have been collected using a hyperspectral sensor with high
spatial resolution; (2) imagery for this area is presently archived and readily
available; and (3) there is a variety of road infrastructure present in the
image (e.g., urban streets, rural roads, highways, and unpaved roads).

The AVIRIS instrument contains 224 different detectors, each with a
wavelength-sensitive range (also known as spectral bandwidth) of ~10 nm,
allowing it to cover the entire spectral range between 380 and 2500 nm. The
pixel size and swath width of the AVIRIS data depend on the altitude from
which the data are collected. In this study, each ground pixel is 4 m?, and the
swath is 2 km wide. Although there are multiple hyperspectral sensors
currently in use, the AVIRIS spectrometer was determined to be the best
source of data for this research for four reasons: (1) the high-resolution data
(4 m resolution) were archived and immediately available through the Jet
Propulsion Laboratory; (2) the data’s study area (Shelton, Nebraska) was

mi
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Shelton, Nebraska

FIGURE 9.1
Location of the study area.
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easily accessible for ground truthing; (3) the data contained a variety of
transportation features (i.e., various types of road surfaces); and (4) the data
were available at no cost for graduate research.

Along with the AVIRIS hyperspectral image, other data used in this study
included GPS data collected during the spring of 2003 for transportation
features such as roads and parking lots, as well as for features and surfaces
that could be easily confused with transportation features and surfaces (e.g.,
fence lines, baseball field infield, parking lots). This GPS information was
used to help accurately define regions of interest. Lastly, a corresponding
high-resolution digital orthophotographic quadrant (DOQ) with 1 m spatial
resolution was used as reference data for classification accuracy assessment.
DOQ imagery was acquired 2 months before the AVIRIS data, and thus,
there should have been little or no change in the study area’s transportation
infrastructure.

9.3 Methodology

This research required the use of various image-processing techniques. The
initial image processing involved the procedures to mosaic, georegister, and
compensate for sensor detector and environmental attenuation error in the
AVIRIS hyperspectral data. Classes based on materials were selected follow-
ing a preliminary survey of the area. The classes were selected on the basis of
materials and composition. More detailed descriptions of the classes may be
found in Table 9.1. Next, the minimum noise fraction transformation and
Classification and Regression Tree (CART) approaches were used to reduce
the dimensionality of the AVIRIS data and simplify further processing.

TABLE 9.1

Transportation Infrastructure Class Descriptions

Class Description

Brick Brick road surfaces

City Asphalt mixed with stone road surfaces located within the city of Shelton
Concrete Concrete road surfaces

Gravel Gravel road surfaces

Highway  Asphalt road surface north of Shelton running east-west and one highway west
of Shelton running north-south

Quarry The quarry south of Shelton containing stone apparently used for city street
construction. This area was included to test for confusion with those roads

Railroad The railroad at the north end of Shelton was included to test for confusion with
roads due to proximity and the similar linear features

Roof Often composed of asphalt, a common road construction material. Rooftops were
included to test for confusion with roads

Track Shelton high school’s asphalt track was included to test for confusion with asphalt

roads
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Then, image classification was performed using the selected classification
algorithms. Finally, the classification algorithms were statistically evaluated
to determine which produced the most accurate results.

9.3.1 Preprocessing

After mosaicking and georeferencing the image, an image-based flat-field
calibration algorithm was used. The flat-field correction method assumes
that there is an area in the scene that is spectrally neutral (no variation in
reflectance with wavelength) [16]. The radiance spectrum from this area is
assumed to be composed primarily of atmospheric effects and the solar
spectrum. Thus, the average radiance of this “flat field” is used as an
estimate of atmospheric and solar attenuation, which can then be used as
a correction factor to convert the radiance in each pixel to reflectance. The
appeal of this image-derived approach is its ability to atmospherically
correct remote sensing data without the dependence on external informa-
tion or measurements, which were unavailable in this study. However, as
pointed out by Clark et al. [17], it should be noted that while this method is
independent of external information or measurements, it also relies on
assumptions about the surface materials in the scene, which are rarely
encountered and, thus, result in apparent reflectance, which shows devi-
ations from spectra of comparable materials measured in the field or labora-
tory. Nevertheless, the flat-field calibration method was the best available
approach for use in this study and was therefore used.

9.3.2 Data Reduction

An MNF transform was used to reduce the number of spectral dimensions
to be analyzed. The MNF transformation is a linear transformation related
to principal components, which orders the data according to signal-to-noise
ratio [18]. It can be used to determine the inherent dimensionality of the
data, to segregate noise in the data, and to reduce the computational
requirements for subsequent processing [18,19]. The MNF transformation
can be used to partition the data space into two parts: one associated with
large eigenvalues and coherent eigenimages and a second with near-unity
eigenvalues and noise-dominated images. By using only the coherent
portions in subsequent processing, the noise is separated from the data,
thus improving spectral-processing results. The higher numbered MNF
bands contain progressively lower signal-to-noise ratio [20]. Using this
method, the 224 band image was reduced to 30 bands that contained the
best signal-to-noise ratio and therefore the highest quality information.

In addition to the MNF transform, a CART was also tested for its ability to
select the best available bands from the hyperspectral dataset. The CART
method, developed by Breiman et al. [21], is a popular decision tree tool that
automatically sifts large, complex databases, searching for and isolating
significant patterns and relationships. In previous remote sensing studies,
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the CART method has been used to analyze reflectance data extracted from
each band for rule-based land-cover mapping [22]. In this study, the CART
method was used to reduce the previously MNF-transformed AVIRIS data-
set even further, essentially reducing the high-quality, noise-free bands of
the MNF dataset to those that only contain most of the information about
transportation features. This was accomplished by importing the results of
the MNF transform into S-Plus statistical software where the CART oper-
ation could be performed. The goal of determining a list of best bands was
an attempt to improve the current data reduction techniques, which are
standard for hyperspectral data. To test this, the classification results gen-
erated using the CART process were compared with the classification
results generated using the entire MNF transform subset.

9.3.3 Image Classification

Hsu and Tseng [23] call attention to the fact that using traditional multi-
spectral classification methods with hyperspectral data usually results in
disappointing efficiency, needing a large amount of training data, and hard
improvement of classification accuracy. As a result, this study utilized
whole pixel classification methods that have been approved for hyperspec-
tral imagery such as spectral angle mapper (SAM) as well as subpixel
classification methods such as mixture tuned matched filtering (MTMF),
which is capable of targeting multiple materials per pixel in hyperspectral
data [11]. Object-oriented classification that uses groups of pixels was also
examined. The specific classification methods used in this research are
discussed in greater detail in the following sections.

9.3.3.1 Spectral Angle Mapper

The SAM classification is an automated method that compares and maps
the spectral similarity of image spectra to reference spectra [24]. The refer-
ence spectra used with SAM can be derived from either laboratory or field
work or extracted from the image itself. Additionally, the SAM classification
assumes that the data have been reduced to apparent reflectance [24]. The
SAM algorithm determines the similarity between two spectra by treating
them as vectors in space with dimensionality equal to the number of bands
and calculating the “spectral angle” between them [20,24]. It should be
noted that poorly illuminated pixels fall closer to the origin (the dark
point) than pixels with the same spectral signature but greater illumination;
however, the angle between the vectors is the same regardless of their
length [24]. In other words, the SAM classification has the advantage of
being totally insensitive to changes in illumination throughout an image.
This is because the SAM method uses only the vector direction of the spectra
and does not consider the vector length [20]. As a result, laboratory, field, or
image spectra can be directly compared with the remotely sensed apparent
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reflectance spectra with the result being a classification image showing the
best SAM match at each pixel. Additionally, gray-scale rule images can also
be calculated, which show the actual angular distance in radians between
each spectrum in the image and the reference spectrum. In this rule image,
darker pixels represent smaller spectral angles, thus spectra are more similar
to the reference spectrum [20].

9.3.3.2 Mixture Tuned Matched Filtering

MTME is a hybrid method based on the combination of well-known signal-
processing methodologies and linear mixture theory [25]. This method
combines the strength of the matched filter method (no requirement to
know all the endmembers) with physical constraints imposed by mixing
theory (the signature at any given pixel is a linear combination of the
individual components contained in that pixel). MTMF consists of two
separate processes. The first process, matched filtering, is used to find the
abundances of user-defined endmembers using a partial unmixing. Tech-
nically, matched filtering only partially unmixes pixels rather than trying to
fully unmix a pixel by identifying every material present. However, as
pointed out by Boardman et al. [26], a complete spectral unmixing of an
image may not be possible or even desired. On the other hand, partial
unmixing provides a method of solving only the small percentage of the
data inversion problem that directly and specifically relates to the goals of
the investigation. The matched filtering technique works by maximizing the
response of the known endmember and suppressing the response of the
composite unknown background, thus “matching” the known signature.
Matched filter (MF) results are presented for each class or training set with a
matched filter score, also known as an MF image. The matched filter image
is simply a gray-scale image with values from 0 to 1.0, which provide a
means of estimating relative degree of match to the reference spectrum
(where 1.0 is a perfect match). Overall, it provides a rapid means of detect-
ing specific materials based on matches to library or image endmember
spectra while at same time it does not require knowledge of all the end-
members within an image scene. The partial unmixing employed by
matched filtering is an ideal method for transportation feature identification
in that it does not require all endmembers in the image to be known. This is
significant since the only materials of interest in this research are transpor-
tation materials, and everything else can simply be considered background.

However, because the matched-filtering technique alone is susceptible to
finding false positives, the MF images are often combined with a mixture-
tuning technique to improve accuracy. Mixture-tuning works by using
linear spectral mixing theory to constrain the MF result to feasible mixtures
and reduce false alarms [25]. MTMEF results are presented as two sets of
images, the MF score (matched filter image), presented as gray-scale images
with values from 0 to 1.0, which provides a means of estimating the relative
degree of match to the reference spectrum (where 1.0 is a perfect match) and
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the infeasibility image, where highly infeasible numbers indicate that mix-
ing between the composite background and the target is not feasible. The
best match to a target is obtained when the MF score is high (near 1) and the
infeasibility score is low (near 0).

9.3.3.3 Object-Oriented Nearest Neighbor

Object-oriented classification is a more recent development in image classi-
fication. The strength in this classification system lies in its ability to group
pixels into segments, which are then classified based on form, textures, and
spectral information [27]. These segments are generated based on similarity
of pixel values as well as user-defined parameters such as size, shape, and
compactness. The goal of the segmentation process is to create objects that
correspond to the features they represent on the ground. A benefit of this
method is the ability to classify segments based on their physical character-
istics and spatial relationships with other pixels as well as with pixels from
different layers of segmentation. Marangoz et al. [27], Coe et al. [28], Zhang
and Couloigner [29], and Zhu and Scarpace [30] have used object-oriented
classification to extract road and infrastructure features from aerial imagery.

The process of object-oriented classification involves first creating seg-
ments based on the user-defined criteria. Then a class hierarchy is created,
which may have parent and child classes for advanced classification. For
example, a parent class of vegetation may be created, which could be classi-
fied based on a vegetation index. Then a grass child class may be classified
based on greenness. Coe et al. [28] used a similar classification hierarchy
in their study. Then the method of classification is defined for all classes or
it may be defined on a class-by-class basis. There are two primary methods
of classification available to the eCognition user—mnearest neighbor and
user-defined membership functions. Nearest neighbor classification plots
samples as vectors in n-dimensional space and classifies each segment
based on the distance from its n-dimensional vector to the sample vector.
Alternatively, a membership functions-based classification scheme may be
developed based on knowledge of the spectral signatures of each material.
eCognition also allows the combination of nearest neighbor classification
and membership functions for each sample. A benefit of eCognition is that it
uses a soft or fuzzy classification method [31]. Fuzzy classification is pre-
ferred because it allows for variations in spectral profiles within a class. In
this case, membership to each class is not a matter of yes or no. There are
degrees of membership to each class. The conversion from fuzzy classifica-
tion to the hard classification necessary to create an output image is based
on the highest fuzzy classification value.

9.3.4 Accuracy Assessment

Accuracy assessment was performed using stratified random sampling for
the SAM, CART-MTMEF, and MTMEF classifications. In this case, there were
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50 random samples for each class. For the object-oriented classification, a
manually classified layer was created that contained all of the known, well-
defined objects for each class. This was used as a reference for accuracy
assessment.

9.4 Results and Discussion

Four classification methods were tested in this study, SAM, object-oriented
nearest neighbor, MTMF, and MTMF combined with CART-selected bands.
Figure 9.2 shows the classified outputs from the MTMF, SAM, MTMF com-
bined with CART (MTMF-CART), and MTMF object-oriented. The overall
accuracies for the four classifications were 88.92%, 81.89%, 84.32%, and
95.27%, respectively (Table 9.2). The overall measures of accuracy provided
by the kappa statistic were 87.61%, 79.87%, 82.46%, and 94.33%, respectively
(Table 9.2).

In terms of reliability, the best overall accuracy and highest kappa coeffi-
cient value were produced by the MTMF object-oriented classification,
whereas the SAM classifier resulted in the lowest overall accuracy and
kappa. The primary reason why the SAM method results were worse than
the MTMF, MTMF-CART, and MTMF object-oriented methods is its greater
difficultly in distinguishing the gravel roads class from the background
class. In this case, the SAM classifier overrepresented the gravel roads
class compared with the other two classifiers by incorrectly identifying a
number of areas in the image as gravel roads that may have been gravel but
technically were not roads (e.g., gravel driveways, gravel parking lots).
Thus, despite the fact that these pixels may correctly identify gravel mate-
rial, they do not correctly identify gravel roads. As a result, these pixels were
recorded as incorrect in the accuracy assessment. Nevertheless, it should
be pointed out that the SAM classifier was the quickest and easiest method
to perform, making it an excellent tool for creating initial classification
images. Further, examination of the error matrix demonstrates that in terms

MTMF SAM MTMF-CART MTMF-Object-orient?go_OO
Legend

Brick street Concrete street Highway Railroad Track
City street Gravel road Quarry Roof

FIGURE 9.2 (See color insert following page 292.)
Comparison of classifications.
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of producer’s accuracy the concrete, gravel, railroad, track, and to a lesser
degree brick classes were classified consistently well when using all four
classification methods. Quarry material was also classified well with the
exception of the SAM classification. On the other hand, no class consistently
underperformed for all four classification methods.

In terms of user’s accuracy, only brick and quarry performed exception-
ally well in all four classification methods. On the downside, city streets and
concrete both performed consistently poorly in terms of user’s accuracy.
However, it should be noted that, like the previously described SAM results
for the gravel class, the majority of error in the user’s accuracy for the
concrete and city street classes was caused by confusion with the back-
ground class. In other words, pixels were classified as either concrete or
city street when in fact they should have been classified as background.
Interestingly, these errors were only partial errors. In nearly all cases, this
error was a result of a concrete driveway classified as concrete street, or a
parking lot made from the same material as the city streets classified as a
city street. Since driveways and parking lots are technically not streets, there
was no other choice but to record them as misclassifications in the accuracy
assessment. This indicates a limitation of remote sensing in general. While
remote sensing classification may allow for materials to be identified, there
is still no way to determine the use of that material. This limitation proved
to be particularly significant in this study.

Other possible explanations for the poor results of the city streets class
using the SAM classifier can be attributed to spectral mixing that is likely to
occur in image pixels representing city streets. This spectral mixing is caused
by overhanging trees, cars parked on the street, and close proximity to similar
materials such as concrete driveways and rooftops. This might explain why
the MTMF-based methods, which possess the ability to detect and extract
specific materials even in mixed pixels, resulted in its better performance
compared with the SAM method. This then raises the question about the
performance of the MTMF-CART method and why its overall accuracy was
only slightly greater than that of the SAM classifier despite the fact that it was
based on the MTMF method. The likely reason that the MTMF-CART classi-
fication method performed worse is twofold. First, the CART method used to
reduce the data dimensionality and select the best bands for transportation
feature extraction is heavily dependent on the size of training sets. In other
words, the CART method required larger training information to make the
CART process more accurate. However, this contradicts with the MTMF
classifier and hyperspectral remote sensing in general where a smaller num-
ber of pixels which are spectrally pure are preferred over larger training sets
that likely contain impure or errant pixels. This idea is reiterated by the work
of Shrestha et al. [31] who point out that endmember selection is critically
important for hyperspectral classification since choosing a wrong one can
make a significant difference in the classification result. In the case of this
study, the larger regions of interest most likely resulted in inaccurate
endmember collection and classification. A second possibility is that by
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attempting to choose only the best bands the CART process simply reduced
the data dimensionality too much. In other words, it is very possible that the
CART method may have eliminated bands that actually contained useful
information about transportation features.

The object-oriented results were quite promising. By using very few
eCognition’s tools, high accuracies were obtained, particularly city street
and roof classes. The increase in overall accuracy could likely be attributed
to fuzzy classification as well as the nearest neighbor classification scheme.
The track and gravel classes each had 100% in each measure of accuracy.
These two classes were significantly different in spectral signature than any
of the other classes, thus they yielded higher accuracy. The concrete class,
which was problematic in the other classifications, provided the worst class
accuracy here as well. The greatest sources of confusion with this class were
city streets and rooftops. Possible reasons for this have been discussed
earlier; however with object-oriented classification, there is potential for
further errors. If the image objects are not correctly defined, then the train-
ing classes are not truly representative of the class. Due to spectral similar-
ities or physical proximities to differing classes, these may be incorporated
into the image segment. If this segment is selected for training data, it will
then affect the results of the classification. Further rules based on size,
shape, or proximity to neighboring classes could be developed and might
enhance class accuracies.

9.5 Conclusion and Future Directions

The object-oriented classifier outperformed the SAM, MTMF-CART, and
MTMEF methods. Overall, all four classification methods were able to iden-
tify the classes of quarry, highway, brick road, railroad, roof top, and fitness
track with a relatively high degree of success. In contrast, the city street and
concrete street classes consistently recorded low accuracies. As mentioned
previously, this is likely due to confusion between parking lots and drive-
ways created from the same materials as street classes. Additionally, all four
classifiers were able to successfully discriminate between road surfaces and
roofing materials. This is in contrast to the results of similar studies, such as
the study conducted by Gardner et al. [3], where confusion between roofs
and roads was reported to be problematic.

In general, this study was considered to be successful, but at the same
time there is still room for improvement beginning as far back as the date of
data acquisition. Typically when a hyperspectral scene is flown by an
airborne sensor such as AVIRIS, a ground crew is present the very same
day to record spectrometer readings from various materials on the ground.
Ground data availability could potentially improve overall results in two
major ways. First, the atmospheric correction process could be greatly
improved with ground information collected the same day as the scene
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was flown. Temperature, humidity, time of day, and spectral readings
gathered in the field can all be used to remove the attenuation caused by
atmospheric conditions. Second, correcting the image in such a manner
essentially standardizes the image and the spectral responses it contains.
This makes it possible to make use of the spectral signatures collected from
ground data and from existing spectral libraries to help improve endmem-
ber development and classification accuracy. However, the AVIRIS data
obtained for this study did not include any ground reference information
so there was no option but to extract the information from the image. While
this proved to be sufficient for this study, future research could benefit from
the advantages of ground calibration data.

Additionally, higher-resolution imagery would potentially help eliminate
the complications caused by mixed pixels. This would be particularly useful
in the urban areas where many objects and materials are often crowded
together. More importantly, higher-resolution imagery might also allow a
method to be created to determine road condition. This method would
greatly increase the utility of remote sensing methods compared with the
current methods for gathering transportation data (e.g.,, GPS vehicles,
photo-log vehicles, and even digitizing). However, current remote sensing
imagery is simply unable to detect the small cracks and bumps that are
typically associated with poor road condition. Imagery with resolutions of
1in. or even less may be required before the extraction of road condition can
be made reliable.

Whether it is pixel-based or object-based, a final important aspect to be
addressed in the future is vectorizing the classified images. Vectorizing the
image classifications is necessary to make the extracted data compatible with
common GIS software packages. This is a crucial step since current transpor-
tation managers rely heavily on GIS for transportation data storage and
analysis. Current software packages available to perform the task of vector-
ization include those such as SoftSoft’'s WinTopo Professional and Able Soft-
ware’s R2V. Overall, this study has shown that transportation features can
successfully be extracted from hyperspectral imagery. The research also
concluded that the object-oriented MTMF classification method produced
the best overall results, making it superior to the SAM classifier and MTMF-
CART methods. On the other hand, there are still many difficulties that must
be overcome. In particular, mixed pixels, the complex urban environment,
and the inability of sensors to detect material use opposed to material type
create significant hurdles, which need to be addressed in the future.

Acknowledgments

This work was supported by the Midwest Transportation Consortium (MTC)
and Iowa DOT. We also wish to thank NASA-JPL for providing the AVIRIS
dataset for this research.



176 Remote Sensing of Impervious Surfaces

References

1. Hallmark, S., Mantravadi, K., Veneziano, D., and Souleyrette, R. Evaluating
Remotely for in Inventorying Roadway Infrastructure Features. Ames: Center for
Transportation Research and Education, Iowa State University, 2001.

2. Khattak, A. and Gopalakrishna, M. Remote Sensing (LIDAR) for Management of
Highway Assets for Safety. Ames: Midwest Transportation Consortium, Center for
Transportation Research and Education, Iowa State University, 2003.

3. Gardner, M., Roberts, D., Funk, C., and Noronha, V. Road extraction from
AVIRIS using spectral mixture and Q-tree filter techniques (Technical Report,
May, 2001). University of California, Santa Barbara, National Consortium on
Remote Sensing and Transportation: Infrastructure, 2001.

4. Church, R. and Sexton, R. Modeling Small Area Evacuation: Can Existing Trans-
portation Infrastructure Impede Public Safety? Santa Barbara, California: Vehicle
Intelligence & Transportation Analysis Laboratory and Department of Geog-
raphy, University of California at Santa Barbara, 2002.

5. Fletcher, D. and Kunda, R. Development and Automation of High Resolution Image
Extraction Methodologies for Transportation Features. Albuquerque: Affiliated
Research Center, University of New Mexico, 1999.

6. National Consortia on Remote Sensing in Transportation. Remote sensing and
spatial information technologies in transportation: Synthesis report 2001.
Washington, D.C.: U.S. Department of Transportation; Stennis Space Center,
MS, National Aeronautics and Space Administration.

7. Harvey, W., McGlone, J., Mckeown, D., and Irvine, J. User-centric evaluation of
semi-automated road network extraction. Photogrammetric Engineering & Remote
Sensing, 70(12), 1353, 2004.

8. Hu, X., Zhang, Z., and Tao, C. A robust method for semi-automatic extraction of
road centerlines using a piecewise parabolic model and least square template
matching. Photogrammetric Engineering & Remote Sensing, 70(12), 1393, 2004.

9. Kim, T,, Park, S., Kim, M., Jeong, S., and Kim, K. Tracking road centerlines from
high resolution remote sensing images by least squares correlation matching.
Photogrammetric Engineering & Remote Sensing, 70(12), 1417, 2004.

10. Song, M. and Civco, D. Road extraction using SVM and image segmentation.
Photogrammetric Engineering & Remote Sensing, 70(12), 1365-1371, 2004.

11. Shippert, P. Introduction to hyperspectral image analysis. Retrieved April 7,
2003, from http://satjournal.tcom.ohiou.edu/pdf/shippert.pdf

12. Herold, M., Gardener, M., Hadley, B., and Roberts, D. The spectral dimension in
urban land cover mapping from high resolution optical remote sensing data.
In: Proceedings of the 3rd Symposium on Remote Sensing of Urban Areas, Istanbul,
Turkey, 2002.

13. Herold, M. and Roberts, D. Spectral characteristics of asphalt road aging and
deterioration: Implications for remote sensing applications. Applied Optics,
44(20), 4327-4334, 2005.

14. Bhaskara, S. and Datt, B. Applications of hyperspectral remote sensing in urban
regions. Poster session presented at the Asian Conference on Remote Sensing,
Taipei, Taiwan, 2000.

15. NCRST (National Consortia on Remote Sensing in Transportation). Achieve-
ments of the DOT-NASA joint program on remote sensing and spatial informa-
tion technologies application to multimodal transportation. Washington, D.C.:



Transportation Infrastructure Extraction 177

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

U.S. Department of Transportation; Stennis Space Center, MS, National Aero-
nautics and Space Administration, 2002.

Roberts, D.A., Yamaguchi, Y., and Lyon, R.J.P. Comparison of various tech-
niques for calibration of AIS data. In: Proceedings of the 2nd Airborne Imaging
Spectrometer Data Analysis Workshop, JPL Publication 86-35, p. 21, 1986.

Clark, R., Swayze, G., Livo, K., Kokaly, R., King, T., Dalton, ]., et al. Surface
reflectance calibration of terrestrial imaging spectroscopy data: A tutorial using
AVIRIS. United States Geological Survey Spectroscopy Lab. Retrieved December
8, 2002, from http://speclab.cr.usgs.gov/PAPERS.calibration.tutorial/calibntA.
html

Green, R., Eastwood, M., Sarture, C., Chrien, T., Aronsson, M., and Chippendale, B.
Imaging spectroscopy and the airborne visible/infrared imaging spectrometer
(AVIRIS). Remote Sensing of Environment, 65, 227, 1998.

Boardman, J. and Kruse, F. Automated spectral analysis: A geological example
using AVIRIS data, North Grapevine Mountains, Nevada. Paper presented at the
meeting of the ERIM Tenth Thematic Conference on Geologic Remote Sensing,
Environmental Research Institute of Michigan, Ann Arbor, MI, 1994.

Kruse, F., Richardson, L., and Ambrosia, V. Techniques developed for geologic
analysis of hyperspectral data applied to near-shore hyperspectral ocean data.
Paper presented at the Fourth International Conference on Remote Sensing for
Marine and Coastal Environments, Orlando, FL, March 1997.

Breiman, L., Jerome, F., Richard, O., and Charles, S. Classification and Regression
Trees. Belmont, CA: Wadsworth Int. Group, 1984.

Sugumaran, R., Pavuluri, M., and Zerr, D. The role of high-resolution imageries
for identification of urban climax forest using traditional and rule-based classi-
fication approach. IEEE Transactions on Geoscience and Remote Sensing, 41(9), 1933,
2003.

Hsu, P. and Tseng, Y. Feature extraction for hyperspectral image. Paper
presented at the Asian Conference on Remote Sensing, Hong Kong, China,
November 1999.

Kruse, F., Lefkoff, A., Boardman, J., Heidebrecht, K., Shapiro, A., and Barloon, P.
The spectral image processing system (SIPS)—interactive visualization and
analysis of imaging spectrometer data. Remote Sensing of Environment, 44,145,1993.
Boardman, J. Leveraging the high dimensionality of AVIRIS data for improved
sub-pixel target unmixing and rejection of false positives: Mixture tuned
matched filtering. Summaries of the Seventh Annual JPL Airborne Geoscience Work-
shop, Pasadena, CA, p. 55, 1998.

Boardman, J., Kruse, F., and Green, R. Mapping target signatures via partial
unmixing of AVIRIS data. Paper presented at the Fifth JPL Airborne Earth
Science Workshop, Pasadena, CA, 1995.

Marangoz, A.M., Oruc, M., and Buyuksalih, G. Object-oriented image analysis
and semantic network for extracting the roads and buildings from IKONOS pan-
sharpened images. In: Proceedings of the ISRPS 2004 Annual Conference, Istanbul,
Turkey, July 19-23, 2004.

Coe, S., Alberti, M., Hepinstall, J.A., and Coburn, R. A hybrid approach to
detecting impervious surface at multiple scales. In: Proceedings of the ISPRS WG
VII/1 “Human Settlements and Impact Analysis” 3rd International Symposium
Remote Sensing and Data Fusion Over Urban Areas (URBAN 2005) and 5th Inter-
national Symposium Remote Sensing of Urban Areas (URS 2005), Tempe, AZ, March
14-16, 2005.



178 Remote Sensing of Impervious Surfaces

29. Zhang, Q. and Couloigner, I. Automated road network extraction from high
resolution multi-spectral imagery. In: Proceedings of ASPRS 2006 Annual Confer-
ence, Reno, Nevada, May 1-5, 2006.

30. Zhu, H. and Scarpace, F.L. Aerial image matching incorporating object recogni-
tion. In: Proceedings of ASPRS 2006 Annual Conference, Reno, Nevada, May 1-5,
2006.

31. Shrestha, D., Margate, D., Anh, H., and Van Der Meer, F. Spectral unmixing
versus spectral angle mapper for land degradation assessment: A case study in
southern Spain. Paper presented at the 17th World Congress of Soil Science,
Bangkok, Thailand, 2002.



10

Road Extraction from SAR Imagery

Uwe Stilla, Stefan Hinz, Karin Hedman, and Birgit Wessel

CONTENTS

10.1  Introduction ......cceveveveiiiiiiiiiii
10.2 Road Extraction from Remote Sensing Data.............c.ccc.......
10.2.1 Modeling of Roads .........cccoevvervieereinicieiccienen

10.2.2 Related Work on Road Extraction ............ccccceeeuneeee.

10.2.3 TUM-LOREX .....cccceniiiiiiiiiiniiiieirsceseceeeeaes
10.2.3.1 Model.....ccooeuiiviiiiiiiiiiccie

10.2.3.2 Extraction Strategy........ccccccoveiininininnnnn

10.3 Road Extraction from SAR Images.........cccccoeeviviiiiiiccnnas
10.3.1 Model for Roads in SAR Images..........cccccoueuruuuncee.
10.3.2 Example: TUM-LOREX Applied to SAR Images ...

10.3.2.1 Correction of the Near-Far Range

Intensity LoSS......cccooeveveviiiiniiiiiiiie,
10.3.2.2 Speckle Reduction.........cccceuvviiinininiinnnnes
10.3.2.3 Data Scaling ........ccccoovvviiuiinininiiiiriiicncnne
10.3.2.4 Focus on Rural Areas.......c.cccccoceiverrucucnnne.

10.3.2.5 Line Extraction with Steger’s Algorithm

10.3.2.6 Evaluation of Linear Primitives ...............
10.4 Extended Concepts for Road Extraction from SAR.............
10.4.1 Integration of ConteXt........ccoovvrvererirerircecnccrceene.

10.4.1.1 Local Context for Road Extraction from

SAR Images......cccoevvvvvievieininiicccie

10.4.1.2 Global Context for Road Extraction

from SAR Images.......cccoovvvviinvniincnnnnn,

10.4.2 Integration of Road-Class-Specific Modeling:

Example “Highways” ........ccccooeiiiiniiiiniiinene
10.4.2.1 Model for Highways .......cccccoeuvvniniinnnce.
10.4.2.2 Extraction of Highways ........cccccecovviniinnne.
10.4.3 Multiaspect Fusion of SAR Images..........ccccceueuueee.
10.4.3.1 Bayesian Fusion Approach ...........ccccc.......
10.4.3.2 Examples ...,



180 Remote Sensing of Impervious Surfaces

10.5 Discussion and ConclUSION .........oecveevveveiieeieeieecteeeee et 210
Acknowledgment..........ccouiiiiiiiiiiii e 211
REFEICIICES ..ottt st e e st e e s saaeesenaeeens 212
|

10.1 Introduction

Road extraction from remote sensing data has been of considerable interest
in recent years due to the rapid progress of geographic information systems
(GIS) and the increasing importance of roads in our daily life. Detailed and
up-to-date road information is an important issue for numerous applica-
tions. Logistics, tourism, car navigation systems are just a few fields of
interest. Yet, to accommodate for the needs of these applications, digital
road information requires frequent updates, whereby the main source for
road data collection is digital aerial and satellite imagery. Despite numerous
technological advances, the process of data acquisition still needs a lot of
manual interaction of a human operator, which is of course both time-
consuming and expensive. Consequently, much effort has been put into
automatic road extraction approaches in recent years (Stilla et al., 2005).

Besides well-known drawbacks due to the specific viewing geometry and
coherent imaging, synthetic aperture radar (SAR) holds some prominent
advantages over optical images (Stilla and Soergel, 2006). For instance, SAR
is an active system, which can operate during day and night. It is also nearly
weather-independent and, moreover, during bad weather conditions, SAR
is the only operational system available today. Road extraction from SAR
images therefore offers a suitable complement or alternative to road extrac-
tion from optical images.

The remainder of this chapter is organized as follows: Section 10.2 sketches
typical approaches for automatic road extraction from remote sensing data
with their underlying models and extraction strategies before outlining an
extraction system developed at Technische Universitaet Muenchen (TUM) in
more detail. Section 10.3 focuses then on the adaptation of this (generic)
approach to the particular challenges induced by the utilization of SAR
images. Finally, Section 10.4 presents novel concepts for the extension of
road extraction from SAR data concerning the employed models and strate-
gies and illustrates the benefits of these extensions by examples.

10.2 Road Extraction from Remote Sensing Data
10.2.1 Modeling of Roads

The extraction of topographic objects from images usually relies on an object
model, which represents an abstraction of the corresponding real-world
object class (roads, buildings, etc.). Since humans tend to organize objects
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FIGURE 10.1
Example for road model as semantic network.

and object classes hierarchically using different levels of abstraction, it is
reasonable to map this hierarchical structure to the model, especially when
each level of abstraction can be linked with a particular scale in image space.
Furthermore, the model should be described in a formalized way so that
inconsistencies in the description are avoided. We will exemplify this type
of modeling by semantic networks in the following sections, since semantic
networks allow representing the knowledge about the objects in a very
transparent fashion (see Figure 10.1). However, other modeling schemes
like frames or production nets (Stilla, 1995) could be used as well.

The model comprises explicit knowledge about geometry (road width,
parallelism of roadsides, etc.), radiometry (reflectance properties), topology
(network structure), and context (relations with other objects, e.g., buildings
or trees). The model described later consists of two parts: the first part
describes characteristic properties of roads in the real world and in the
used data, and represents a road model derived from these properties.
The second part defines different local contexts and assigns those to the
global contexts. In this way, the complex model for the object road is split
into submodels that are adapted to specific contexts.

A description of roads in the real world can be derived from their function
for human beings: roads are defined as a place, where one may ride, that is,
an open or public passage for vehicles, persons, or animals. They are
important for communication and transportation between different places.
Therefore, roads are organized as a network. The denser an area is inhabited
and the more intensively it is used, the denser the road network is. With
respect to their importance, network components are classified into a hier-
archy of different categories with different attributes. According to the
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different categories, roads differ with respect to minimum curvature radius
and maximum allowed slope. Some important attributes for parts of the
road network are the type and state of the road surface material, existence of
road markings, sidewalks, and cycle tracks, or legal instructions, such as
traffic regulations. The appearance of roads strongly depends on the sen-
sor’s spectral sensitivity, its viewing geometry, and its resolution in object
space. In images with low resolution, that is, more than 2 m pixel, roads
mainly appear as lines that form a more or less dense network. Contrary to
this, in images with a higher resolution, that is, <0.5 m, roads are projected
as elongated homogeneous regions with almost constant width. Here the
attainable geometric accuracy is better, but background objects like trees or
buildings disturb the road extraction more severely. On the other hand, in a
smoothed image—which corresponds to a reduced resolution—lines repre-
senting road centerlines can be extracted in a stable manner even in the
presence of these background objects. The smoothing reduces the influence
of background objects or even eliminates them at all.

This scale-space behavior can be interpreted as abstraction, that is, the
object road is simplified and its fundamental characteristics are empha-
sized, as shown in Mayer and Steger (1998). It follows that, when high-
resolution data are available, not only the highest resolution should be
considered but also lower resolutions, since the fusion of multiple scales
contributes to improve the reliability and robustness of road extraction.

The road model shown in Figure 10.1 describes objects by means of
“concepts,” and is split into three levels defining different points of view.
The real-world level comprises the objects to be extracted and their rela-
tions. On this level, a road network consists of junctions and road links that
connect junctions. Road links are constructed from road segments. In fine
scale, road segments are aggregated by lanes, which consist of pavement
and markings. For markings there are two specializations: symbols and line-
shaped markings. The concepts of the real world are connected to the
concepts of the geometry and material level via concrete relations (Toenjes
et al., 1999), which connect concepts representing the same object on differ-
ent levels. The geometry and material level is an intermediate level which
represents the 3D shape of an object as well as its material (Clément et al.,
1993). The idea behind this level is that in contrast to the image/data level it
describes objects independently from sensor characteristics and viewpoint.

Road segments, for instance, are linked to the “straight asphalt lines” of
the geometry and material level in coarse scale. In contrast to this, the
pavement as a part of a road segment in fine scale is linked to the ““elong-
ated, flat asphalt region” on this level. In case of markings that are painted
on the road, they are modeled as colored thin lines or symbols.

While real-world level and geometry and material level describe the
object independent of the sensor, the concepts at data level are of course
strongly dependent on the sensor used for data acquisition. The pavement
concept, for instance, differs significantly for aerial images (see, e.g.,
Baumgartner et al., 1999) and SAR images. While roads appear as bright
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FIGURE 10.2

Context regions and context relations for modeling the influence of background objects.
(Adapted from Baumgartner, A., Eckstein, W., Mayer, H., Heipke, C., and Ebner, H., Automatic
Extraction of Man-Made Objects from Aerial and Space Images (II), Birkhauser Verlag, Basel,
Switzerland, 1997.)

region in aerial images, they are usually darker than their surroundings in
SAR images. Section 10.3 will elaborate this in more detail.

The road model presented earlier (Figure 10.1) comprises knowledge
about radiometric (i.e., data-related), geometric, and topological character-
istics of roads. This model is extended by knowledge about context:
so-called context objects, that is, background objects like buildings, trees,
or vehicles, can support road extraction, but they can also interfere. In
addition, external GIS data can be regarded as context object. Experience
has shown that modeling this interaction between road objects and context
objects on a local level as well as a global level is an aid for guiding the
extraction since the interpretation problem is split into smaller subpro-
blems, which can be solved more efficiently by using specific models and
extraction strategies.

In order to capture the varying appearance of roads globally, the
so-called context regions ““urban,” ““forest,”” and “rural” are distinguished
(cf. Baumgartner et al., 1997, 1999; Hinz and Baumgartner, 2003; Wessel,
2006). Furthermore, the local context is modeled with so-called context rela-
tions, that is, certain relations between a small number of road and context
objects, which describe the influence of neighboring objects on the appear-
ance of roads in a certain context region. Figure 10.2 shows typical context
relations and their dependence on context regions, while two typical instances
of a context relation ““occlusion_shadow’” are depicted in Figure 10.3.

Note, however, that the use of knowledge about local context and the
verification of specific relations between local objects will in most cases be
possible in high-resolution imagery only, because the image features which

Road-segment Road-segment

Road-segment Road-segment

Shadow
Tree o
Building
FIGURE 10.3

Sketches for context relation “occlusion_shadow’” (see Figure 10.2).
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contribute to the local context are usually not very prominent. Therefore,
the local context is more tightly connected with the high resolution, whereas
information about global context usually can be derived from images of
lower resolution and is useful to guide the road extraction in both scales.

Not every context sketch has to be taken into account everywhere. The
relevance of objects and relations depends on the global context. Roads in
urban or suburban areas look quite different and have other relations
compared with roads in rural or forest areas. In contrast to buildings in
rural areas, buildings in downtown areas are very close to and highly
parallel to roads; sidewalks and cycle tracks are more likely to appear in
urban areas; in rural areas single trees and single buildings might hinder
extraction, whereas in forest regions mainly shadows and occlusions pose
problems. Therefore, it is wise to use different context sketches not only at
multiple resolution levels but also within context regions.

10.2.2 Related Work on Road Extraction

In this section, we briefly outline some earlier fundamental work on road
extraction in general. The ideas incorporated in these approaches are mainly
independent of the sensor used, and many of them have been used in later
developments.

The existing approaches cover a wide variety of strategies to extract roads
automatically from digital aerial or satellite imagery, or at least to automate
parts of the manual extraction process. As GIS-driven approaches for road
extraction (Stilla, 1995; Bordes et al., 1997; deGunst and Vosselman, 1997;
Zhang et al.,, 2001; Zhang 2004; Gerke et al.,, 2004) are more useful for
verification than for extraction of new roads, we focus in the discussion of
previous approaches on those that also aim at extraction of previously
unknown roads. In semiautomatic approaches an operator provides, for
example, starting points and starting directions on the road for a road
following algorithm (McKeown and Denlinger, 1988; Vosselman and de
Knecht, 1995). If an operator measures more than one point on the road, an
algorithm like F-algorithm can be applied to find an optimal path, that is, the
road between these points (Fischler et al., 1981; Merlet and Zerubia, 1996). If
multiple views are used, this can also be done in 3D (Gruen and Li, 1997). The
advantage of the approaches with multiple points is that the path of the road
is more constrained, which results in a more reliable handling of critical
areas. A similar approach based on so-called ““ziplock” snakes is presented
in Neuenschwander et al. (1995). By automatic detection of the seed points,
semiautomatic schemes can be extended to fully automatic ones.

An automatic approach is described in Barzohar et al. (1997). The selec-
tion of starting points is based on gray-value histograms. Further assump-
tions about geometry and radiometry are described in a Markov random
field. Road extraction is then performed by dynamic programming. Another
fully automatic approach for the extraction of road networks from digital
aerial imagery has also been proposed by Ruskone (1996): hypotheses for
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connections between automatically detected seed points are checked using
geometrical constraints. The approach of Baumgartner et al. (1997, 1999)
employs line and edge extraction and grouping at two different resolutions
to find reliable initial road hypotheses. These hypotheses are verified and
connected using global and local context models as described earlier. While
these approaches mainly exploit the local road characteristics like parallel
roadsides and homogeneous interior, the work of Steger et al. (1997),
Wiedemann and Hinz (1999), and Wiedemann and Ebner (2000) focuses
on the function of roads connecting various places in a scene. Thus, the
exploitation of road network characteristics by optimal path calculations
through a graph of road hypotheses plays a major role. A combination of the
approaches of Baumgartner et al. (1999) and Wiedemann and Hinz (1999)
including a detailed evaluation is presented in Hinz et al. (2001). It shows
that both approaches complement each other and achieve superior results
when combined. Finally, the approaches of Price (2000) and Hinz and
Baumgartner (2003) extend the previous work for dense, complex urban
areas. Major focus is put on the incorporation of detailed road elements
like markings and lanes as well as their context relations (see Hinz and
Baumgartner, 2003). To handle the huge complexity of such scenes, a
self-diagnosis scheme is employed in the extraction system.

In the following section, we describe the approach “TUM-LOREX" of
Steger et al. (1997), Wiedemann and Hinz (1999), and Wiedemann and
Ebner (2002) in more detail. This road extraction system is especially
designed to exploit the network characteristics of roads and relies on a
generic architecture that—once primary linear features including their
attributes have been extracted from the data—is independent of the spectral
characteristics of the underlying remote sensing data.

10.2.3 TUM-LOREX

10.2.3.1 Model

The underlying road model of this approach consists of the top part of the
road model displayed in Figure 10.1. The relevant part of the real-world
level is depicted in Figure 10.4.

The system expects linear features (road segments) and their attributes as
input. These may stem from line extraction, for instance using the approach
of Steger (1998), or from other approaches, which are able to deliver initial
road hypotheses as exemplified in Baumgartner and Hinz (2000). Based on

Road network

Connects

Road link Junction

Is aligned FIGURE 10.4
~ Real-world level of road model of
(_Road segment TUM-LOREX.
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these primitives so-called regional characteristics of roads are introduced.
These incorporate the assumption that mostly roads are composed of long
and straight segments having constant width and reflectance. Finally, roads
are described globally in terms of functionality and topology: the intrinsic
function of roads is to connect different—even far distant—places. They
thus form a network wherein all road segments are topologically linked to
each other. Though, since the image covers only a part of the whole road
network, different subnetworks may occur in the image, which are not
necessarily connected.

10.2.3.2 Extraction Strategy

The extraction strategy is derived from the road model and is composed of
different steps (see Figure 10.5). After extracting, evaluating and introdu-
cing road segments as linear primitives, a weighted graph is constructed
from the primitives and the gaps, that is, connection hypothesis, between
the end points of different primitives. Road network generation is carried
out by calculation of “best paths”” among various pairs of points, which are
assumed to lie on the road network with high probability. Finally, the
extracted road network is topologically completed and refined. In the follow-
ing text, a detailed description of each step is given.
Line primitive processing has three different tasks:

1. Increase the probability that line primitives either completely cor-
respond to roads or to linear features not being roads

2. Fuse linear primitives extracted from different sources (channels,
sensors, aspects, etc.)

3. Prepare the primitives for the generation of junctions

Ad 1: Linear primitives will not be split during the final extraction step, road
network generation, to avoid costly iterative calculations. That means, they
will either be completely added to the road network or they will not be
added at all. Therefore, it is necessary to ensure that primitives completely
correspond to roads or to linear structures not being roads, that is, linear
primitives have to be split at points where they potentially cross a roadside.
The most significant feature for a change in the semantics of a primitive

Core of TUM-LOREX

Linear '} Linear processing|F02d segments | road network | F0ad links | Road network ! Road !
i primitives 1| and evaluation generation - completion [ network !
N Junctions N
T I Multiple data sources/multiple images Ii
FIGURE 10.5

System architecture of TUM-LOREX.



Road Extraction from SAR Imagery 187

(road /not road) is high local curvature. Hence, they are split at points where
the curvature exceeds a given threshold. A potential overpartitioning of
linear primitives that result from this threshold is acceptable since, during
the following network generation, the individual parts of partitioned line
can be merged again.

Ad 2: To make use of complementary and supplementary properties of
multiple input sources, the linear primitives of different sources are fused
by a union operation, whereby redundantly extracted primitives are elimi-
nated. “Redundancy” is defined as follows:

1. Linear primitives of different channels overlap each other within a
buffer of a certain width.

2. The direction difference of—even partly—overlapping lines does
not exceed a given threshold.

3. Primitives extracted with high redundancy are weighted higher
than primitives extracted in only one source.

Ad 3: Junctions are an essential part of the road network, but they are rarely
detected during primitive extraction. To prepare the generation of missing
junctions, lines are split at points which are a priori candidates for junctions.
These are points close to other line ends, as, for example, point P in Figure
10.6, which lies on line [; closest to the end of line I,.

The results of these three preprocessing steps are road segments, which
are input to the global-grouping algorithm in the next step.

For road network generation, a weighted graph is constructed from the
road segments to introduce regional characteristics into the extraction strat-
egy. The nodes of the graph correspond to the end points of the road
segments and the edges are the road segments themselves. Piecewise linear
fuzzy functions are used to transform the following properties of lines into
fuzzy values (Zadeh, 1989):

1. Length
2. Straightness, that is, standard deviation of local orientation

3. Mean width of a line and width constancy, that is, standard
deviation of the width along the line

FIGURE 10.6
Candidate for a junction.

Te
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4. Mean gray value and gray-value homogeneity along a line

5. Degree of overlap with lines extracted (redundantly) from other
channels

These fuzzy values are derived from the set of primitives, which results
from the second preprocessing step (fusion of multiple data sources). Cal-
culating the fuzzy values after the third preprocessing step (splitting linear
primitives due to junction candidates) would lead to an incorrect evaluation
of the road segments in many cases, because splitting affects the primitives’
properties, for example, the length, and a decision if a junction candidate
truly represents a road junction or if it is only caused by blunder is not
possible at this state of processing.

An overall fuzzy value for each road segment is derived by aggregation of
the individual fuzzy values using the fuzzy-""and’”’-operator (Zadeh, 1989).
A final weight for each line is eventually calculated by dividing the length of
the line by its overall fuzzy value. The final weights thus correspond to costs
which are assigned to the respective edges of the graph. Optionally, a
weighting of the different input sources can be introduced, for example,
while using different geometric or radiometric resolutions. This means that
the final weight of a road segment is scaled by a factor depending on the
confidence one may concede the specific source, which a particular road
segment’s underlying primitive originally stems from.

Since the road segments are in general not connected to each other,
especially, if they originate from different input sources, such connections
have to be made possible. Each pair of end points of different road segments
therefore defines a gap (see, e.g., Figure 10.7), and, as in the case of road
segment weighting, fuzzy values are derived from:

1. The absolute gap length
2. The relative gap length (compared with the adjacent road segments)

3. The direction differences between the gap and the adjacent road
segments, whereby collinearity (within a road) and orthogonality
(e.g., at junctions) are preferred

4. An additional clipping threshold, which ensures that the weight of
a gap cannot become higher than that of the adjacent road segments

FIGURE 10.7
Multiple connections at a h 912
junction.
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As before, an overall fuzzy value for each gap is calculated by aggregating
the individual fuzzy values. For each gap yielding an overall fuzzy value
greater than zero, a new edge is inserted into the weighted graph which
receives as final weight (cost) the length of the gap divided by its overall
fuzzy value. Thus, bridging of gaps is made possible. Gap weighting is
purely based on regional criteria, but the decision which gaps are finally
to be added to the road network should also consider the global network
characteristics of roads. These are introduced in the following step of road
network generation.

Various seed points, that is, road segments with high weights and thus
high probability of being truly a road are selected and connected pairwise
by calculating the optimal path through the weighted graph using the
Dijkstra algorithm (Sedgewick, 1992). However, the optimal path is only
calculated if the distance between two seed points exceeds a certain thresh-
old, for example, 1 km. In doing so, the function of roads connecting places
far away from each other is emphasized, whereas it is still possible to detect
isolated parts of the road network as long as they are large enough. The
combination of all resulting paths forms the road network.

There are still topological deficiencies in the extracted road network,
especially in the vicinity of junctions where connections might be missing.
In addition, the result might contain some separated subnetworks that
can be possibly connected. To accommodate such situations, a final topo-
logical completion and refinement step is employed based on the calcula-
tion of network-specific parameters, especially a so-called detour factor
(Wiedemann and Ebner, 2000). Figure 10.8 shows a part of a sample net-
work, which could be the result of the previous steps, consisting of four
nodes (A, B, C, D) and three edges (AB, BC, CD). Basically, between
each pair of points a link hypothesis is generated, for which two types of
distances are calculated:

FIGURE 10.8
(a) Network, (b) network and optimal distances, (c) detour factors, and (d) selected link
hypothesis.
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1. The network distance nd along the shortest path within the exist-
ing network where, for example, ndpp is the sum of ndgc and
ndcp (see Figure 10.8b). It is computed for all possible pairs of
points lying on the network and thus depends on the actual length
and classes of the roads along which the shortest path has been
found.

2. The optimal distance od along a hypothetical optimal path. It is
intended to represent the requirements for fast and cheap trans-
ports and depends—besides the Euclidian distance between the
two points—on factors like topography, land use, and environ-
mental conservation.

For each point pair, the ““detour factor” is calculated from the two distances
defining detour_factor =nd/od. Figure 10.8c illustrates the detour factors for
all point pairs. Here, both the network distance and the optimal distance are
set to the Euclidean distance between the respective points for simplicity
reasons.

The—naturally very large—number of link hypotheses is reduced assum-
ing that only those links which show a locally maximal detour factor are of
any interest for deeper investigation. Hence, a nonmaximum suppression
(NMS) is performed on the set of all link hypotheses. In the earlier example,
only the link hypothesis AD passes the NMS (see Figure 10.8d) yet, in
general, more than one link hypothesis will be kept per point.

All remaining link hypotheses are sorted according to their detour factor
and processed beginning with the best one. This connection hypothesis is
sent to a module sought to verify the link hypothesis based on image data.
For instance, the module designed for road primitive extraction might be
used, but now called with relaxed parameter settings. Once a link hypoth-
esis is accepted, it is inserted into the road network. Then the procedure of
generating link hypotheses has to be started anew since the topology of the
road network has changed. This process iterates until no further link
hypothesis is generated or one can expect that the verification module will
reject any further hypothesis.

10.3 Road Extraction from SAR Images

Compared with road extraction from optical images, rather few approaches
have concentrated on road extraction from SAR images. When dealing with
SAR imagery, one has to cope with the typical drawbacks of SAR-specific
phenomena such as speckle-affected images, foreshortening, layover, and
shadow. These phenomena arise from the side-looking scene illumination of
the SAR sensor and make an object extraction in general difficult (Stilla et al.,
2003, 2004).
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As extraction approaches designed for optical images, work on road
extraction from SAR images can be separated in the extraction of linear
primitives and the following network generation step. Some approaches
developed special line detectors for SAR images (Tupin et al., 1998;
Chanussot et al., 1999) or use a combination of a previous classification
as input for the line extraction (Dell’Acqua et al., 2003). In addition, a
dedicated preprocessing is performed, if well-sophisticated line detectors
for optical images are applied (Jeon et al., 2002; Wessel, 2006). In contrast
to the line detection, techniques for grouping and network generation
algorithms are similar to those used for optical images, as this step is
relatively data-independent.

In the following, we describe the adaption of the abovementioned
TUM-LOREX road model for the specific characteristics of SAR images.

10.3.1 Model for Roads in SAR Images

As described in Section 10.2.1, a road model comprises knowledge about
radiometric (i.e., data-related), geometric, topological, and context-related
characteristics of roads. In SAR images with a resolution of 1-2 m, roads
appear in general as dark lines with low curvature and constant width.
Geocoded SAR images do not show significant geometric deformations.
Therefore, it can be stated that the geometrical properties of the real-world
model of roads can be kept despite the side-looking geometry of the
SAR sensor.

The radiometry of SAR images relies on the physical parameters of
the surface. In case of impervious roads, the most important parameter
is the surface roughness. Since the surface of roads is smooth compared
with the wavelength of the imaging radar, specular reflection of the incident
energy is the most prominent scattering effect at roads and thus only a small
amount of energy is returned to the sensor. Beyond the physical properties
of the object, the so-called speckle effect—a consequence of the coherent
imaging—has an impact on the radiometry of the image. The speckle effect
adds multiplicative noise to the images, that is, the noise level in a homo-
geneous area is proportional to its intensity. However, as roads have low
intensity in SAR images, the noise level is also relatively low compared with
the road’s surroundings. All this leads to a low and relatively homogeneous
dark appearance of roads in SAR images.

Whenever the complexity of the scene increases, interactions between
roads and other objects appear frequently. Especially when interactions
with high-elevated objects occur, layover and shadow effects arise. Lay-
over occurs whenever the emitted radar signal reaches the top of a target
before reaching the ground, that is, when the top is closer to the sensor as
the ground. As a result, the top is displaced toward the sensor and its
returning echo is superimposed with the echoes of the scatterers at the
same distance to the sensor, which ultimately results in a very bright or
even oversaturated image area. As has been empirically investigated by
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Stilla et al. (2004), a road can be partly or totally covered by layover and
shadow, especially in urban areas. In addition, bright double bounces or
trihedral scattering influence the appearance of roads. For such situations,
more information about local and global context has to be introduced into
the road extraction.

10.3.2 Example: TUM-LOREX Applied to SAR Images

In Section 10.2.3, the TUM-LOREX approach for automatic extraction of
roads from remote sensing data was described. The core of TUM-LOREX
consists of a generic approach that is relatively independent of the data
source. In this section, we apply the TUM-LOREX approach to SAR
images. Therefore, mainly the first part, the extraction of linear primitives,
has to be adopted for SAR data (Figure 10.9). For the extraction of linear
primitives a specific strategy was developed, which is described later.

The extraction of linear features from SAR data is a critical point since the
multiplicative noise of SAR data complicates this task drastically. Multiplica-
tive noise leads for common line operators (developed for optical images) to
an increase of extracted line segments as the intensity level increases. As
these operators are gradient-based approaches and designed for optical
images, they usually assume a Gaussian noise distribution, which is not
valid for SAR. On the other hand, approaches especially designed for SAR
data take correctly into account the multiplicative noise. However, they are
often less flexible because they use template-based methods that are less
sensitive to different line widths and orientations (Bovik, 1988; Tupin et al.,
1998; Borghys et al., 2002). For roads, this task can be facilitated by using
some road characteristics for the extraction of lines, like for example, Gamba
et al. (2006).

- SAR-specific preprocessing
Image 1

Adapta}tlons for SAR-specific Correction of Speckle Data
SAR images 5 near—far range — P
g preprocessing intensity loss reduction scaling

Focus on
open rural
areas

N

| Linear primitive |
| extraction |

.____.|,____l

Core of
TUM-LOREX

FIGURE 10.9
Strategy for road extraction from SAR data with TUM-LOREX.
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For our extraction system, we chose a combination of a sophisticated
gray-value curvature-based approach for line extraction—Steger’s differen-
tial geometric approach (Steger, 1998)—and an elimination of line segments
extracted at higher intensity levels. Steger’s line detector is independent of
the line direction, robust, subpixel precise, and well capable of extracting
lines of several widths. Thus a maximum of candidates for roads is ensured
before selecting line segments possibly being false alarms, that is, those line
segments that are not consistent with the road model are eliminated during
the evaluation process within the core of TUM-LOREX (Section 10.2.3). The
rest is introduced as road segments for road network generation.

Before applying the line detector, we perform a number of preprocessing
steps in particular regarding the near—far range intensity loss, the speckle
effect, and data scaling. Furthermore, the line detector is only applied to
open rural areas (Wessel, 2006). Those preprocessing steps are described in
the following subsections.

10.3.2.1 Correction of the Near—Far Range Intensity Loss

The backscattering is subject to a near—far range intensity decrease. Objects
in far range have a lower backscattering as the same objects in near range
due to the greater incidence angle. This relation is also true for roads. In
Figure 10.10a, the dependency between the backscattering coefficient of
roads in X-band data and the incidence angle is shown. A notable near—far
range loss can be observed, which makes the elimination of incorrect road
candidates based on global thresholds more difficult. A correction of the
near—far range intensity loss is necessary to achieve an equal backscatter-
ing intensity of roads for all incidence angles (Figure 10.10b). Another
option would be to consider the near—far range effect directly within the
extraction.
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FIGURE 10.10

Dependency of backscatter coefficient of roads in X-band data on the incidence angle (backscatter
in dB vs. local incidence angle in degree). (a) Standard calibration and (b) corrected calibration.
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In general, a standard calibration (Equation 10.1) delivers the correction
yielding:

o9 = (101og DN? 4 K) sin ), (10.1)

where
DN is the reflection values
K is a calibration constant
O1oc is the local incidence angle

However, for the object class “roads” this correction performs an under-
correction. As can be seen in Figure 10.10a, the standard correction even
forces the intensity loss in far range. A possible alternative is a correction
according to an—empirically found—incidence angle dependency of roads
(Figure 10.10b). In studies, we found that calibrated data in airborne SAR
images have an inclination of about —0.25° compared with well equalized
gray values.

10.3.2.2 Speckle Reduction

Speckle reduction is an important step as we apply a gradient-based
approach that would extract a lot of false alarms in single-look intensity
images. First of all, we use amplitude images that are less infected by
speckle. Additionally, we tested different speckle filters as the Frost-filter
(Frost et al., 1982), refined Lee-filter (Lee, 1981), and multilooking. It has
been shown that the line extraction on multilook images delivers less falsely
extracted lines than on other filtered single-look data. This can be explained
by the noise distribution of multilook data (four looks), which can be
approximated by a Gaussian distribution (Ulaby et al., 1986).

10.3.2.3 Data Scaling

Suitable data scaling can bring out contrasts more clearly; this facilitates the
extraction of some objects or at least the setting of parameters. Data scaling
transforms the measured values into another interval. As the gray values of
roads are located at the lower part of the dynamic range, the higher part has
no relevance for roads. Therefore, it is possible to reduce the dynamic range
by cutting off the higher dynamic part without loss of information for roads.

10.3.2.4 Focus on Rural Areas

The road extraction also depends on the region where it is applied, that is,
on the global context. For roads, three global context regions have been
distinguished earlier: rural, urban, and forest areas. The used line extraction
is most suitable to extract lines in rural areas, because in those areas the line
model fits best to the appearance of roads. In order to avoid false road
extractions in other context regions, the search area is limited to rural areas.
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rroaa

Hence, a classification of the global context areas “forest,”” “urban,” and
“rural” is carried out. The classification is designed for X- and L-band data.
The advantage in using these two frequency bands relates to the comple-
mentary radiometric characteristics of the global context areas in these
bands, which eventually facilitates the discrimination. Forest has a high
backscattering in L-band because of its volume scattering; urban areas
show high contributions in both bands due to double-bounce returns.
Open rural areas have low to middle backscattering. A result of this classi-
fication is shown in Figure 10.11. Areas of low intensity are segmented as
further reduction of the search area for roads.

10.3.2.5 Line Extraction with Steger’s Algorithm

After performing the preprocessing steps and the classification of rural
areas, the line extraction algorithm of Steger (Steger, 1998) is applied. This
operator is based on differential geometry and captures the local radiomet-
ric road characteristics. It assumes a parabolic profile of roads and can
extract bright or dark lines. To initialize the procedure, a few semantically
meaningful parameters have to be determined: The maximum width of the
lines to be extracted can be chosen according to the road width scaled to the
image. The two threshold values, which control the process of linking
individual line pixels into pixel chains, can be derived from the gray value
contrast between roads and their surroundings. Additionally, local line

FIGURE 10.11
Classification of context areas. (a) Section of a scene.
(continued)
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FIGURE 10.11 (continued)
(b) classification result: rural areas (black), forest (white) urban areas (dark gray), shadows
(bright gray).

attributes like width, direction, and contrast are obtained. The result of
the line extraction is a set of pixel chains and junction points for each image
in subpixel precision. Due to the exclusive use of local road characteristics,
the resultis not complete and contains false alarms, that is, some roads are not
extracted and some extracted lines are not roads. The linear primitives are
introduced into the core of TUM-LOREX, whose next step is an evaluation.

10.3.2.6 Evaluation of Linear Primitives

In the evaluation step of TUM-LOREX, all extracted linear primitives are
evaluated according to the road model. The fuzzy-logic weights are derived
for each linear primitive from the evaluation measures. Especially the
evaluation according to the maximum acceptable mean gray value is an
important measure for SAR images. Because of the low backscatter of roads,
this measure acts effectively for an elimination of incorrect hypotheses. The
evaluation of linear primitives guarantees in cooperation with the line
extraction of Steger a good basis for the network generation.

The resulting set of linear features after the preprocessing steps, line
extraction and line evaluation, is fed into the TUM-LOREX system for
road network generation (see Section 10.2.3.2 and Figure 10.5). A final result
of road extraction from SAR data applying TUM-LOREX with the previ-
ously described specific strategy is shown in Figure 10.12.
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FIGURE 10.12
Road extraction result with SAR-specific strategy (white lines: extracted roads; black lines:
missing roads; dashed white lines: urban contours).

10.4 Extended Concepts for Road Extraction from SAR

The results of the TUM-LOREX approach show that the automatic extrac-
tion results are in general quite, complete, and reliable. But if the road is
disturbed, for example, with layover of adjacent high objects like trees or
buildings the extraction is interrupted. These are SAR-inherent difficulties
because of the side-looking geometry of the SAR sensor. These effects make
road extraction complicated, primarily—yet not purely—in urban areas. In
case of adjacent high buildings, roads might only be partly visible in the
radar image (Stilla et al., 2004). Furthermore in urban areas, the complexity
arises through dominant scattering caused by building structures, traffic
signs, and metallic objects in cities. In order to compensate for possible gaps,
additional information needs to be considered.

In the following, we will outline three different concepts to include
additional information:

1. The introduction of context information: Adjacent objects to roads
like metallic bridges, road signs, or vehicles have a direct contex-
tual relationship to roads and can be incorporated into the road
extraction procedure. The same is true for rows of buildings,
which cause layover and shadow areas (Wessel and Hinz, 2004;
Amberg et al., 2005). We will show the potential of using local and
global context for the extraction (Wessel, 2004).
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2. The incorporation of specific detailed models: A road may have
different geometry and appearance in SAR images depending on
its respective road class. Primary roads, for instance, are usually
straight and wider than secondary roads; and highways have
usually two carriageways separated by crash barriers. We will
exemplify the road-class-specific modeling by an additional road
model for the road class ““highway.”

3. The use of multiview imagery: That means, multiple SAR images
of the same scene are used, but with varying illumination from
different directions. The illumination from different directions
employs both supplementary and complementary information so
that the general detectability of roads is increased. A numerical
analysis for the potential improvement can be found, for example,
in Stilla et al. (2004). It is obvious that, in urban areas, best results
for the detectability of roads are obtained whenever the illumi-
nation direction coincides with the local orientation of the road
axis. Preliminary work has shown that the utilization of multi-
aspect SAR images also improves automatic road extraction. This
has been tested both for real and simulated SAR scenes (Tupin
et al., 2002; Dell’Acqua et al., 2003). We present an approach based
on Bayes’ theory for a combination of different views.

10.4.1 Integration of Context

Context can be divided into local and global contexts. Local context refers to
context objects that only appear in connection with roads, for example,
vehicles, bridges, or larger traffic signs. Global context is a design driver
for the road model, respectively the used extraction strategy. The potential
of the use and integration of context to support road extraction will be
discussed in the following subsections.

10.4.1.1 Local Context for Road Extraction from SAR Images

Neighboring or contextually related objects to roads are called context
objects, like trees aligned to the road or traffic signs. They have a special
contextual relation to roads and can interrupt and disturb line extraction.
Situations in which background objects in SAR images make road extraction
difficult are mainly caused by the following local context objects.

1. Layover and shadow regions caused by buildings and trees

2. Blurred bright stripes caused by vehicles moving in along-track
direction

3. Bright reflections caused by metallic objects like traffic signs or
bridges

By modeling the influence and incorporating these objects into the road
extraction process, one can take advantage of the fact that these objects
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are strong evidence of roads. Further objects such as a row of trees might as
well be situated nearby a road and can be represented as a minor evidence
of roads.

The relations of objects like buildings, vehicles, or vegetation with a road
are given by (1) closeness, (2) parallelism, or (3) coverage. Many of the
context objects are characterized by a high backscattering caused by metallic
structures or by multiple bounces.

Studies for an automatic extraction of the mentioned context objects from
SARimages are still topics of research (Kirscht, 1998; Lee et al., 2006; Stilla and
Soergel, 2006). In the following examples, we assume that the context objects
have been extracted by an external module and need to be integrated into the
road extraction approach. For this, it is important to (1) estimate the evidence
each context object provides for roads and (2) choose an appropriate repre-
sentation form for each context object: High evidence for roads is provided by
context objects that almost exclusively appear in conjunction with roads and
rarely elsewhere. Therefore, vehicles blurred in azimuth direction, and also
bridges, get high weights. Their representation form is a line. Other objects
provide less evidence for roads. For example, rows of trees appear nearby
roads but also elsewhere. They are henceforth represented as lines attached
with low weights. Large traffic signs only appear together with roads. How-
ever, their correct (automatic) interpretation is assumed to be quite hard, so
that they are added to the graph as medium-weighted short straight lines.

10.4.1.2 Global Context for Road Extraction from SAR Images

The knowledge about global context in a scene is a relevant design driver for
the extraction; on the one hand for choosing the most suited extraction
strategy, on the other hand for supporting exclusion/inclusion zones or
triggering the extraction.

As mentioned earlier, three global context regions distinguished for roads
are: rural, urban, and forest areas. In rural areas, the local context objects may
appear differently and may have different influence on roads as in forest and
urban areas where trees and buildings, respectively, are more frequent than in
rural areas. Forest areas are excluded from the extraction since roads are rarely
visible in SAR images of forest regions due to the oblique viewing geometry.
By exclusion of regions, we cannot extract any longer a real network. This
emphasizes the need for good seed information—a general difficulty of every
automatic extraction algorithm. Urban areas, on the other side, are a good
indicator for roads. Usually roads start or end at urban areas and cities are
connected by roads. Hence, they are used to define reliable seed information
for the road network completion. For this task, the information about the
border of the cities is introduced with a weight into the network generation.

Figure 10.13 illustrates the benefits for road extraction when including
local and global context information. Some gaps can be closed by using local
context and some new roads are found by the introduction of cities as
seed information. But the result also shows that still some gaps and false
extractions are remaining.
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FIGURE 10.13

Road extraction in rural areas
without and with integration
of context information. (a) Sec-
tion of the SAR image, (b)
ground truth data, (c) result
without exploitation of context,
and (d) result with exploitation
of context.

10.4.2 Integration of Road-Class-Specific Modeling: Example ‘“Highways”’

The extraction of highways sometimes fails due to the more complicated
structure of highways compared with roads. Especially the central crash
barrier separating the two driving directions is a salient feature, and the
approach for rural roads is not able to cope with it.
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FIGURE 10.14
Orientation-dependent effects of the appearance of highways in SAR images.

10.4.2.1 Model for Highways

In contrast to city streets that are often completely occluded for side-looking
radar, highways are mostly wide enough to be imaged with typical incidence
angles. The model describes a highway comprising two (anti)parallel roads
that are bordered by crash barriers. To extract such types of objects, the use of
a multiscale model has proven to be very important (Hinz and Baumgartner,
2003). In the highest resolution, a highway is characterized by two parallel
dark lines separated by a thin bright line, the central crash barrier. This crash
barrier is a reliable feature, because it consists of differently arranged metallic
components that act like small corner reflectors in almost every direction—
though with different strengths. Figure 10.14 illustrates this and some more
typical effects depending on the viewing angle: (A) Crash barriers in azimuth
direction act like a corner reflector and appear very bright. (B) In other
orientations, the direct metallic reflection dominates. (C) There are also
some areas without any reflection. These are either caused by mirror reflec-
tions or by radar shadows in case of very high objects nearby. (D) Context
objects like bridges or tunnels, vehicles or traffic signs complicate the extrac-
tion (see Section 10.4.1.1). In the same image with a reduced resolution (about
6 m), the fundamental structure of a highway is emphasized. It appears as a
dark, smooth-curved line, and the crash barriers are no more visible.

10.4.2.2 Extraction of Highways

The extraction strategy for highways consists of four different steps:
(1) hypotheses formation in low resolution, (2) hypotheses formation in
high resolution, (3) fusion of both resolutions, and (4) network generation.

1. To create highway hypotheses in low resolution, dark and wide
lines are extracted (Steger, 1998). The resulting lines are weighted
with respect to highway construction parameters (width, length,
curvature).

2. Inthe high resolution, dark lines and thin bright lines are extracted,
that is, candidates for the individual roads and the crash barrier in
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FIGURE 10.15
Extraction in fine scale (a), in coarse scale (b), and final result (c).

between. To get initial highway hypotheses, parallel dark lines
enclosing a bright line are selected. These line aggregations are
rated according to highway construction constraints and, in add-
ition, according to the gray-value difference of the parallel darklines.

3. All hypotheses are fused now using a “’best-first” strategy. Thereby,
hypotheses extracted in both resolutions get the highest weights.

4. Finally, the network is extracted by the graph-based grouping
algorithm.

A typical result of this extended road extraction approach is depicted in
Figure 10.15.

10.4.3 Multiaspect Fusion of SAR Images

Multiaspect SAR imagery illuminates the scene from different directions
and has the advantage of delivering complementary information. If the line
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FIGURE 10.16
Antiparallel SAR views. Sensor: MEMPHIS (FGAN-FHR), 35 GHz, resolution of 1 m, 6 ~ 60°.
(a) Illuminated from the left and (b) illuminated from the right.

extraction is not able to detect the line in one scene due to occlusions, it
might be able to succeed in a second exposure. But critics of multiaspect
images mean that multiaspect SAR images are associated with much effort
during the flight campaign. However, a second exposure from an antipar-
allel view can be taken with less effort during the return flight. Figure 10.16
shows two antiparallel SAR views of a rural area close to Ravensburg,
Germany. The secondary road, which ranges from the left to the right of
the scene, is partly covered in one image, visible in the other image, and
vice versa.

Multiaspect SAR images contain not only redundant and complementary
information, but also contradicting information. This requires a careful
selection within the fusion process. A correct fusion step has the ability to
combine information from different sensors, which in the end is more
accurate and better than the information acquired from one sensor alone.
In the following chapter, we will focus on a fusion approach applied to
multiaspect SAR images. In the first part, we will discuss different fusion
strategies, followed by a more detailed discussion of the underlying theory
of a probabilistic fusion strategy. In the end, we will present results of
the fusion of line segments extracted from two suburban multiaspect
SAR images.
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10.4.3.1 Bayesian Fusion Approach

In general, better geometric accuracy is obtained by fusing information
closer to the source. But contrary to multispectral optical images, a fusion
of multiaspect SAR data on pixel level makes hardly any sense. SAR data is
far too complex. Besides the speckle, the appearance of elevated object is
dependent on the sensor viewing geometry and may appear totally different
in multiaspect SAR images. The line extraction from SAR images often
delivers partly fragmented and erroneous results. Oversegmentation occurs
frequently. To be able to solve possible conflicts, the uncertainty of the line
primitives needs to be estimated before fusion. Decision-level fusion means
that an estimate (decision) is made based on the information from each
sensor alone and these estimates are subsequently combined in a fusion
process. If we put this into practice, the first step would consist of a line
extraction in each image, followed by attribute extraction. Based on these
attributes the uncertainty of each line primitive is estimated, followed by a
fusion.

Many methods, both numerical and symbolic, can be applied for the
fusion process. Some frameworks worth mentioning are evidence theory,
fuzzy-set theory, and the probability theory. The last one is, regarding its
theoretical foundations, the best understood framework to deal with uncer-
tainties. In the following sections, we will discuss the application of a fusion
process, which accommodates for these aspects. The chain of a decision-
level fusion based on Bayes’ statistical theory is depicted in Figure 10.17.

The underlying theory of the approach originates from Bayesian prob-
ability theory and can be drawn from the well-known Bayes’ theorem

XY, x p(Y|D)

p(Y|X,I) = e R (10.2)

The strength of Bayes’ theorem is that it relates the probability that the
hypothesis Y is true given the data X to the probability that we have
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FIGURE 10.17
Fusion concept.



Road Extraction from SAR Imagery 205

observed the measured data X if the hypothesis Y is true. The latter term is
much easier to estimate. All probabilities are conditional on I, which is made
to denote the relevant background information at hand. Since we are mostly
interested in the solution, which yields the greatest value for the probability
of the measured data, usually referred to as the maximum likelihood esti-
mate, we can write Bayes’ theorem in a compact form:

pOYIX,I) o p(X|Y 1) - p(YID). (10.3)

The main feature involved in the road extraction process is the line primitive
L, which can either be identified as a ROAD or as a FALSE_ALARM, which
represent our two classes Y; and Y,. If relevant, these hypotheses can be
extended with more classes Y3, ..., Y, (e.g., river, shadows). The identifica-
tion is done by means of our measured data X, which in our case corres-
ponds to the geometric and radiometric attributes of the line primitive. If
two or more images are available, we shall combine data from multiple
sources. Then the earlier assumptions will be extended to the assumptions
whether a ROAD truly exists in the scene or not. We need to add a third
term to our measured data X; the fact that a line has been extracted (L) or not
extracted (L) from one or more images. Hence, we deal with the following
hypotheses:

Y; =A ROAD exists in the scene
Y, =A FALSE_ALARM exists in the scene

The images can be regarded as independent observations. The probability
that an object Y; exists given the measurements Xj, ..., X,, Ly, ..., L, can by
means of Bayes’ theorem and by means of the product rule be expressed as

N

p(YIX, L Doc [ [(p (X3l Li, Y5, I) - p(Lil Y3, 1) - (YD) (10.4)
i=1

where
p(L|Y4, I) is the posterior probability that a line is extracted if a ROAD
truly exists
p(X|L,Y;, I) is the posterior probability that the data X is measured if a
ROAD exists AND a line has been extracted
p(Y1]]) is the prior or subjective probability that a road exists in the image

The last one represents a subjective probability and can be defined by the user.
Global context can here be especially useful. The frequency of roads is
proportionately low in some context regions, for instance in forestry regions.
In these regions, we normally have problems of frequently occurring false
alarms. The second posterior terms can be estimated out of training data.
The selection of attributes of the line primitives is based on the knowledge
about roads and is similar to the selection of attributes (fuzzy evaluation) in
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Chapters 2 and 3. Radiometric attributes such as mean and constant intensity,
and contrast of a line as well as geometrical attributes like length and
straightness are all good examples. Since we deal with several attributes, an
attribute vector is created. It should be pointed out that more attributes do not
necessarily mean better results, instead also the opposite may occur. Hence, a
careful selection including a few, but significant attributes is recommended.
If there is no correlation between the attributes, the likelihood p(X|Y;) can be
assumed equal to the product of the separate likelihoods for each attribute.

p(X[Y)) = p(x1, x2, ..., xa|Y}) = p(2| Yj)p(x1]Y)) . . . p(xu|Y7). (10.5)

Each separate likelihood p(x;|Y;) can be approximated by a probability density
function learned from training data. Learning from training data means that
the extracted line primitives are sorted manually into two groups, ROADS
and FALSE_ALARMS. A fitting carried out in a histogram with one dimen-
sion is relatively uncomplicated, but as soon as the dimensions increase the
task of fitting becomes more complicated. Figure 10.18a and b show the
histogram of the attribute length and its fitted lognormal distributed curve.

The estimated probability density functions should represent a degree of
belief rather than a frequency of the behavior of the training data. The
obtained probability assessment shall correspond to our knowledge about
roads. At a first glance, the histograms in Figure 10.18a and b seem to
overlap. However, Figure 10.18c exemplifies for the attribute length that
the discriminant function

g(xi) = In(p(xi|Y1)) — In (p(xiY2)), (10.6)

increases as the length of the line primitive increases. The behavior of the
discriminant function shall correspond to the belief of a human interpreter.
Preferably the discriminant function shall be tested for each attribute.
After the separate likelihood is estimated for each line primitive, all line
primitives are sorted according to their discriminant value. The line primitive
with the highest discriminant value is chosen first and its neighboring line
primitives are searched for. Redundant line primitives are removed accord-
ing to the same buffer width and collinearity criteria as described in Section
10.2.3, but the weight is now estimated by means of Equation 10.4. As a result,
the line primitives obtain an uncertainty assessment instead of a fuzzy value.

10.4.3.2 Examples

The fusion approach was tested on two multiaspect SAR images (X-band,
multilooked, ground range SAR data) of a suburban scene near the airport
of DLR in Oberpfaffenhofen, southern Germany. One image was illumi-
nated from the south (Figure 10.19a) and one from the south-east (i.e., with
roughly 45° difference). Manually extracted global context was incorporated
into the process and was used as prior information (see Table 10.1 and
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ALARMS by a lognormal distribution, and (c) discriminant function.
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FIGURE 10.19
(a) One of the SAR scenes analyzed in this work, (b) manual extraction of global context from
previous SAR scene, and
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FIGURE 10.19 (continued)

(c) results of line extraction from previous SAR scene. The computed discriminant value g(X) of
each line primitive is coded in gray, that is, the darker the line the higher is the probability that
the line primitive belongs to a ROAD. (d) Results after fusion. This time, the lines are coded in
their finally computed probability of being ROADS.
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TABLE 10.1

Prior Terms for Different Global Context Areas

Global Context p(ROADS) p(FALSE_ALARMS)

Fields 0.2 0.8
Urban areas 0.3 0.7
Forest 0.05 0.95
Other areas 0.2 0.8

Figure 10.19b). The posterior probabilities, p(L|Y1,I) and p(L|Y>,I) were set to
0.6 and 0.4, respectively. The fusion was tested on a line extraction carried
out in a scene taken by the same sensor as the training data but now
performed with different parameter settings. In order to test the derived
likelihood functions in terms of sensitivity and ability to discern roads from
false alarms, we allowed a significant oversegmentation (Figure 10.19c).
Most line primitives that correspond to roads got a good evaluation.
As can be seen from Figure 10.19c and d, the detection rate is higher for
the fusion of two images compared with the line extraction in one view.

10.5 Discussion and Conclusion

In this chapter, we have given the reader an introduction to road extraction
from SAR data. Starting with a general description of modeling roads
independent of the sensor and describing the generic TUM-LOREX system,
we then have put emphasis on the adaption of the automatic road extraction
approach toward the particular challenges of SAR data. The proposed
approach aims at open rural areas and is suitable for imagery with a pixel
size of ~2 m or less on ground.

In general, automatic road extraction from SAR data is challenging, sim-
ply on the basis of the effects of the side-looking geometry of the SAR
sensor. Therefore, today, hardly any automatic road extraction procedures
dealing with SAR data alone is able to deliver sufficiently correct results for
an operational use. TUM-LOREX was originally designed for optical data
and it was recently validated that TUM-LOREX still stays highly competi-
tive compared with other approaches when applied to optical imagery
(Mayer et al., 2006). But still, TUM-LOREX is far from getting transferred
to a fully automatic operational mode even for optical data, which is con-
sidered as less complicated as SAR data. An operational mode requires
results with high correctness, which is hard to obtain by a fully automatic
system. One has to keep in mind that the results presented in this work are
obtained by an experienced user. A potential user may need some training.
One advantage of SAR images is the fact that the setting of parameters can
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be reduced to 2-3 relevant parameters to be tuned for an average result,
respectively to 6-8 for a refined result.

Considering the transition into operational use, any automatic road
extraction system needs to be supplemented by an interactive editing tool
so that a human operator may check and edit the automatically obtained
result. The utilization of confidence values attached to each extracted road is
of highest importance for reducing the interactive efforts, as has been
demonstrated in Hinz and Wiedemann (2004). In this context, it is desirable
to base the whole extraction process onto a statistical formulation instead of
fuzzy functions (Section 10.4.3). This will reduce the amount of sensitive
parameters to be set by the user. In this way, the automatic part of the road
extraction process would increase and involve a certain time-saving for the
user. As soon as one has passed the critical step of parameter setting,
the computational time is reasonable even for relatively large SAR data. If
the learned likelihood functions are robust enough to be applied to different
images—of course under the condition that the image characteristics do not
differ too heavily—still remains to be seen. One should also keep in mind
that the Bayesian fusion still has to be connected with the following step, the
network-based grouping. First after the fusion has been fully implemented
in TUM-LOREX, the performance of the statistical approach can be ana-
lyzed in depth.

The work presented in this chapter, showed that the demand on further
research on automatic road extraction from SAR data still remains. For a
transition to more complicated areas, such as suburban or forestry areas,
neighbored information (bridges, moving vehicles, and traffic signs) needs
to be incorporated to a higher extent in the road modeling. In this work,
these features were extracted manually. It remains still to be seen, to what
extent a robust extractor of several local features is feasible or not. Conse-
quently, also these features involved in local context relations should be
attached with confidence values. Preferably, when available, the incorpor-
ating local context information shall be complemented with multiview data
to increase the detection rates of the roads. Besides, a multiview approach
has the ability to involve a reasoning step, which is based on the sensor
geometry and its influence on the relations between the extracted features
(local context and possible road candidates). One of the advantages of TUM-
LOREX is its flexible architecture, which allows a future development of
implementation of both context information and multiview image data.
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11.1 Introduction

There is a strong demand for accurate and up-to-date road network infor-
mation. Road network knowledge is crucial for the creation and the update
of maps, geographic information system (GIS) database, transportation, or
land planning. For local authorities, cartography of the road network is
needed for urban planning, dirty water collection through gutter network
(most often located under roads), traffic flow analysis, or pollution map-
ping. Closely related applications are geomarketing, electricity and telecom-
munication networks, databases for car navigation, and so on. Currently,
road network cartography is essentially done by human interpretations of
high-resolution aerial images and additional in situ information. This is a
long and tedious work that requires to be done again for each update of the
road network.

High spatial resolution imagery is now available for civilian applications
and reveals the very fine details of the imaged area. Examples of high-
resolution satellites are SPOT 5, IKONOS, QuickBird, OrbView, or EROS.
The term “high resolution” is relative and refers to satellites with spatial
resolutions better than 5 m in the panchromatic channel (one can even talk
about very high resolution when the image resolution is better than 1 m).

The current availability of high spatial resolution images represents an
undeniable asset to Earth observation. The urban environment, which is the
most difficult context because of its high complexity and information den-
sity, could benefit the most from high-resolution imagery (Puissant and
Weber, 2002). In addition to the increased precision for road detection and
location, high-resolution satellite imagery can be used in numerous cases
where access to the studied area is difficult: administrative constraints,
authorization to overfly the area, conflicts, wars, or natural catastrophes.
Moreover, satellite means is significantly cheaper than aerial or in situ data
acquisition campaigns.

As promising as it is, the use of high-resolution images for road extraction
induces a change in the road representation and a significant increase in
noise. Moreover, quantitative assessment of the results has to be redesigned
when dealing with such images. In this chapter, a new method suitable for
high-resolution images is proposed. Originally designed for urban areas,
this method can naturally be applied to easier cases such as rural or semi-
rural areas. The chapter is structured as follows.
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The change in the road representation induced by high resolution
imagery is first presented. A short survey on road extraction with the
evolution from linear to surface models is proposed (Section 11.2).

A new method for extracting road networks from high spatial resolution
images is then described. It models roads as a surface and is built on cooper-
ation between linear and surface representation of roads. In order to over-
come local artifacts, the method makes use of advanced image processing
tools, such as active contours and the wavelet transform (Section 11.3).

An example of application of the method on a high-resolution image from
the QuickBird satellite is proposed. The result is quantitatively assessed
compared with human interpretation (Section 11.4).

This chapter concludes with a discussion on the principal benefits of the
method and on future prospects (Section 11.5).

11.2 Automatic Extraction of Road Networks: From Linear
to Surface Methods

11.2.1 Linear and Surface Representation of Roads

Automatic extraction of road networks from satellite images is not a recent
problem. It has been the topic of numerous works in the field of remote
sensing for more than 20 years (see Mena, 2003, for an overview). However,
due to its complexity, it is still an active field of research. Before the
availability of high resolution, the extraction methods published were dedi-
cated to images with a spatial resolution of 10 m at best. At this resolution,
roads are represented by lines of 1-3 pixels, leading to methods extracting
linear road networks. Visible roads at this resolution are primary roads,
freeways, highways, or boulevards in town. Secondary roads are not visible
or have a fragmented aspect in the image.

With the availability of high spatial resolution images, road perception
changes from linear to surface representation (>3 pixel wide). Surface
representation means that the road is no longer represented as a line of a
certain thickness, but as two parallel contours defining a surface. The
radiometry of this surface is often inhomogeneous, especially in the urban
context.

11.2.2 New Sensors, New Cartographic Scale

Road representation on a map is also highly related to the cartographic scale
of interest (Figure 11.1). According to cartographic generalization prin-
ciples, roads at a scale of 1:25,000 are represented by lines well located on
the road centerline, but with a width thicker than in reality (Figure 11.1a).
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FIGURE 11.1
The cartographic representation of roads depends on map scale. IGN Belgique (a) map at scale
of 1:25,000 and (b) map at scale of 1:10,000.

The Belgium geographic institute (IGN Belgique) has recently achieved
the mapping of the whole country at a scale of 1:10,000. At this scale, the
road is represented as a surface element, and its width on a map corres-
ponds to its real width at the ground level (Figure 11.1b).

Road network extraction methods can be classified into two groups: linear
approaches and surface approaches. These two approaches differ in the
road representation, depending on the image resolution and the carto-
graphic scale of interest. The special issue of Photogrammetric Engineering &
Remote Sensing on linear feature extraction from remote sensing data for
road network delineation and revision (PE&RS, 2004) gives a good overview
of recent methods available. In the following sections, the two groups of
approaches are presented.

11.2.3 Road Extraction: Linear Approaches

Before 1999, the best spatial resolution delivered by satellite sensors was
10 m. Moreover, satellite or even aerial images were mainly used for the
creation of maps at scales smaller than 1:25,000. Hence, the first works about
road extraction were linear approaches.



Road Networks from High Spatial Resolution Images 219

The first methods for line extraction were based on generic tools of image
processing, such as linear filtering (Wang and Howarth, 1987) and mathe-
matical morphology (Destival, 1987; Serendero, 1989). Later more advanced
techniques were used, such as Markov fields (Merlet and Zérubia, 1996) or
point process (Lacoste et al., 2005), neural networks (Bhattacharya and
Parui, 1997; Doucette et al., 2001), dynamic programming (Gruen and Li,
1995), or multiscale analysis (Baumgartner et al., 1999). Other approaches
were based on Kalman filtering (Véran, 1993; Vosselman and De Knech,
1995) cooperation of different algorithms (Mac Keown and Denlinger, 1988),
multisource approaches (Rellier et al., 2000; Jin and Davis, 2005) or by using
the third dimension (Zhang et al., 2000), combination of multispectral chan-
nels provided by satellite sensors (Xiaoying and Davis, 2003; Bacher and
Mayer, 2005; Zhang and Couloigner, 2006), or expert systems (Garnesson
et al., 1992; Eidenbenz et al., 2000).

A more complete review of techniques for extracting linear features from
imagery can be found in Quackenbush (2004).

11.2.4 Road Extraction: Surface Approaches

11.2.4.1 Introduction

Methods for surface extraction were first applied to airborne images where
roads appear as surface elements. The appearance of high spatial resolution
images has reboosted this research. These methods are often based on a
road model, that is, the radiometry along one road is relatively homoge-
neous and contrasted compared with its background. Moreover, the width
of the road and its curvature are supposed to vary slowly. Active contours
were used for surface road extraction by several authors (Fua and Leclerc,
1990; Péteri and Ranchin, 2004; Amo et al., 2006). Other approaches were
based on light propagation simulation (Guigues and Viglino, 2000), the use of
the third dimension (Wang and Trinder, 1998), and multiscale approaches
(Couloigner and Ranchin, 2000; Laptev et al., 2000).

11.2.4.2 A Better Precision, New Kinds of Artifacts

Figure 11.2 illustrates the level of details reached by available civil sensors.
This image of an urban scene comes from the QuickBird satellite and has a
spatial resolution resampled at 70 cm in the panchromatic channel. At this
resolution, roads have two visible sides and are localizable with high pre-
cision. One can notice the high level of visible details (cars, ground mark-
ings, projected shadows, etc.) that represent noise or artifacts in automatic
extraction methods. Other kinds of artifacts that can be encountered are
trees, tarred areas (parking, airport), or buildings with radiometry similar to
roads and with an important contrast compared with their environment.
On the one hand, this significant increase in noise in the image compli-
cates the task of road extraction algorithms. On the other hand, this increase
in the spatial resolution potentially enables a more precise geographic
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FIGURE 11.2
QuickBird image from the city of Strasbourg, France. Copyright DigitalGlobe.

location, a better identification of the different road types (highways, main
streets, small lanes, etc.), and an estimation of the road network area.

Taking advantage of high-resolution imagery for automatic mapping
implies defining a method able to take into account this change from linear
to surface model for roads. The method should also be robust with respect
to noise (often encountered in urban environment) and to deal with all the
distinguishable types of roads.

In the following sections, a new method suitable for high-resolution
satellite images and meeting the mentioned requirements is proposed.

11.3 A Collaborative Method for Surface Road Extraction
from High Spatial Resolution Images

11.3.1 Description

The method proposed in the following section was originally developed for
dealing with the new context of high-resolution images over urban areas
(Péteri, 2003; Péteri and Ranchin, 2003). This method can naturally be
applied to easier cases such as rural or semirural areas where roads are
often more visible and artifacts less numerous.

In order to extract and characterize the road network from high-
resolution images, a modular method has been developed (Figure 11.3).

Inputs of the algorithm, besides the high-resolution satellite image, are
models of roads, such as local parallelism of road sides (see Couloigner and
Ranchin, 2000) and properties of the road network (such as connexity).
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Processing algorithm

Extracted
road network

FIGURE 11.3
The methodology including topology management and road reconstruction.

Moreover, four classes of road width have been defined (according to
established specifications). The algorithm is composed of two sequential
modules: a graph module and a reconstruction module. They are working
in a collaborative way to provide a surface extraction of the road network.

A topologically correct graph of the road network is first extracted. This
step aims at giving correct spatial connections between roads as well as an
approximation of their centerline location. The next step is the actual road
reconstruction. Due to the high resolution of the images, a surface recon-
struction has to be performed. This step uses the previous step of graph
management as an initialization for the reconstruction.

In the following sections, the different modules of the process are
described. For a more detailed description of the different steps of the
method, one could refer to Péteri (2003).

11.3.2 Graph Management

This module intends to extract a topologically correct graph of the road
network. It aims at giving correct spatial connections between roads as well
as an approximation of their location.

The graph management module is composed of two steps.

11.3.2.1 Extraction of the Graph Polylines

The graph can come from a road database or be extracted automatically. In
this second case, the graph extraction algorithm is based on the work of
Airault and Jamet (1995). This algorithm is semiautomatic at the initializa-
tion step, where the user gives a seed point and an initial direction of
propagation. The principle of this tracking algorithm is to generate a
research tree of potential paths and to select the best path for the road to
detect by minimizing a cost function. The cost function evaluates the homo-
geneity of the local radiometry variance for the potential directions of
propagation. This homogeneity has a minimal variance in the direction
corresponding to the road direction. The algorithm robustness is ensured
by optimizing the directional homogeneity criterion on a long enough
distance (the research tree depth).
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Initialization of IntersectionSnakes.

11.3.2.2 Getting the Complete Graph by Connecting
the Extracted Polylines

A road is defined from an intersection to another and is represented in
the network graph as a polyline. Roads are connected to each other at the
intersections, which are the graph nodes.

Because of their difference in shape and topology, roads and intersections
have to be processed separately, both for their detection and their extraction.
The border between roads and intersections is defined by an intersection
circle (Figure 11.4), which includes the whole intersection and is manually
given by the user. It separates the two kinds of processing: extraction of road
segments with parallel sides and extraction of intersections. Its center will
be a graph node defining an intersection.

The graph network topology is reconstructed from the different uncon-
nected polylines extracted from the tracking algorithm. These polylines are
then linked to the centers of the intersection circles they are crossing. After
this step, the extracted graph is topologically correct, but the different
polylines are not necessarily well registered on the road centerline. More-
over, the road network has a linear representation.

From the extracted graph, polylines are then sampled and propagated
along their normal direction to initialize the surface reconstruction module.

11.3.3 Reconstruction Module

11.3.3.1 Description

The goal of this module is to reconstruct roads as surface elements from the
graph provided by the previous step. This module makes use of specific active
contours (snakes) combined with a multiscale analysis. Active contours
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(Kass et al., 1987) are deforming models that enable to introduce a priori
information about the object to extract. Their evolution is controlled by an
energy functional that should be minimized to fit to the shape to extract.
Our snake implementation is based on the greedy algorithm described by
Williams and Shah (1992). The joint use of the multiscale analysis with the
wavelet transform enables to increase the algorithm robustness, by mini-
mizing the problem of noise proper to high-resolution images (vehicles on the
road, ground markings, etc.). Two sequential steps compose this reconstruc-
tion phase: the extraction of road segments with parallel sides and the extrac-
tion of road intersections. Indeed, these two objects present too many
differences in both topology and shape to be processed in the same way. The
intersection circle constitutes the frontier between these two steps (Figure 11.4).

11.3.3.2 Extraction of Parallel Road Sides

In order to extract segments of road with parallel sides, a new mathematical
model has been defined: the DoubleSnake. It is composed of two discrete
open active contours (called branches) with evolution constraints of simple
active contours, and evolving jointly to maintain a local parallelism between
them. A new energy term E; in the DoubleSnake evolution has been intro-
duced to take into account this notion of local parallelism between its two
branches. Moreover, their extremity points are forced to minimize their
energy while staying on the intersection circle (Figure 11.4).

The DoubleSnake energy functional controlling its evolution is defined as

E] = Z {ai Eéont + Bi Eéurv + yiEé/ image + SZE;/} 4 (111)

i

where
i represents the point i of one of the branch
o', B, 9, and &' are weighting values for the different energies at point i
El . and E. . are internal energies that control the shape of the
DoubleSnake. E' _, controls the space between snake’s points

E. . controls the snake’s curvature

Special attention is paid to the image energy term Ej. as it is the one
that attracts the DoubleSnake to the object to extract. The wavelet transform
enables a multiscale representation of the contours in an image (Mallat and
Zhong, 1992).

The image energy term is then computed at different spatial scales j, using

the coefficients of the wavelet transform:

E) image = —V | W £+ W2 £, (11.2)

where W;fz f(i) are the coordinates of the wavelet transform at scale j.
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11.3.3.3 Extraction of Road Intersections

Once road segment extraction is finished, the intersection extraction starts.
The active contour used at this step (the IntersectionSnake) consists of an
open active contour. It is initialized by linking extremity points of the
DoubleSnakes with segments and then sampling them. A “breaking’” point
is introduced by the algorithm if the angle § between two extremities is less
than 3m/5 (see Figure 11.4).

11.3.3.4 Reconstruction Algorithm

Figure 11.5 illustrates the different steps of the reconstruction algorithm
from the road network graph.

From the original image, a multiscale analysis is performed, decomposing
the images hierarchically into a set of approximation images of coarser
resolution and a set of wavelet coefficient images (Mallat, 1997). The
DoubleSnakes are running on all the successive approximation images,
from the coarsest resolution image given by the road class, till the original
resolution image. For each approximation image, the image energy term is
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FIGURE 11.5

The surface reconstruction algorithm.
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computed from the associated wavelet coefficient image. This energy term
enables active contours to be attracted by details present at the resolution of
the considered approximation image.

Once DoubleSnakes have all minimized their energy, the IntersectionSnakes
are initialized and their extraction starts in the same multiscale process. Two
constraints are added during their evolution: their extremities are fixed,
and the active contour is constrained not to go out of the intersection circle.
At the end of the different iterations, all the active contours are in an
equilibrium state.

11.3.4 Properties of This Approach

This approach has the particularity to use a collaboration between the two
kinds of road representation: the linear representation and the surface
representation. The separation of the two processes enables the user to
perform an intermediary check, and if needed a correction, between the
extraction of the road network graph and the reconstruction step. The aim is
a continuous check of the quality of the extracted road network.

We propose in this chapter the algorithms for the two modules, but one
can also think of other methods for each step. For instance, one can think of
the graph step of any algorithm enabling a linear extraction of the road
network (see Quackenbush, 2004), possibly reducing the image resolution
artificially. This method is therefore open to future evolutions.

11.3.5 Assessment of the Results

In an operational context, quantitative assessment is essential. It enables to
characterize the results of an automatic algorithm, as well as to give a
measure of reliability. A reference is needed to compare the obtained results
and to get qualitative criteria.

Péteri and coworkers (Péteri and Ranchin, 2002; Péteri et al., 2004) have
shown that a reference extracted from the digital image and based on only
one human interpretation is not reliable for a very high spatial resolution
scene with artifacts.

A method based on the acquisition of the reference by several image
interpreters has then been proposed. It enables to reduce the human inter-
pretation variability. From a ““mean” interpretation that is taken as the
reference, several criteria are used for comparing a road extracted by the
algorithm to the reference: the Hausdorff distance, comparison between
the lengths, and comparison between the areas. A tolerance zone has also
been defined, representing the variability among the different human inter-
preters. The quantitative assessment is performed by computing the per-
centage of the extracted contour located in this tolerance zone. One could
refer to Péteri et al. (2004) for a precise description of this reference and for
the different comparison quantitative criteria that are used.
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11.4 Application: QuickBird Image of the Area
of Fredericton, Canada

11.4.1 Description of the Studied Scene

The following scene comes from the QuickBird satellite from the firm
DigitalGlobe. This satellite acquires images in the panchromatic mode at a
spatial resolution of 0.61 m. The presented image in Figure 11.6 has been
resampled at 0.70 m. This image has been acquired on 31 August 2002 above
the town of Fredericton, Canada (Figure 11.6). The town of Fredericton is
typical of North American cities, where the street network is quadrilinear.

One can notice the several artifacts on the road surface, such as vehicles or
ground marking (in particular roads 6 and 9). There is also a high number of
partial occlusions of the roads, mainly due to trees and building shadows
(roads 2, 3, 5, and 10). Finally, there are three types of X" intersections and
one type of “T” intersection (between roads 5, 7, and 8). The following
sections detail the different steps of the extraction of this road network as
well as its quantitative assessment.

11.4.2 Extraction of the Road Network Graph
Figure 11.7 shows the result of the road tracking algorithm.

Road 11

Road 6 Road 7

Road 8

Road 9 Road 5

Road 10 Road 3

Road 2

Road 1
Road 4

FIGURE 11.6
QuickBird image from the center of Fredericton, Canada DigitalGlobe.
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FIGURE 11.7
After the extraction of polylines
by the tracking algorithm.

Five seed points (black round dots in Figure 11.7) as well as the initial
directions of propagation have been given by the user. The tracking results
in five polylines, and some are crossing several intersections. During the
whole tracking process, there were three cases when the user had to correct
the trajectory (black lozenge-shaped dots). These mistakes are due to occlu-
sions caused by shadows on roads 6 and 11, and due to the close radiometry
of road 10 and a building next to it.

The next step consists in the extraction of the graph topology from this set
of extracted polylines and the intersection circles. As described in Section
11.3.2, polylines where extreme points are located on the intersection circles
are truncated and then linked to the center of this circle (Figure 11.8). When
polylines are crossing several intersections, they are ““divided” into several
parts. The graph is then subsampled by keeping for each polyline one point
out of three (Figure 11.9).

FIGURE 11.8
Getting the topological graph.
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FIGURE 11.9
Topological graph subsampling.

At this stage, the graph network is complete and topologically correct, but
the graph polylines are not well registered on the road centerline (for
instance roads 2, 4, or 11). This graph enables to initialize the surface
reconstruction module.

11.4.3 Reconstruction Module

From the obtained graph, polylines are then sampled and “propagated” at a
distance defined by the road class. Here, roads are main streets of Frederic-
ton and all are considered as class 3 (see Péteri, 2003). Coefficients control-
ling the evolution of active contours are defined by the user and are fixed on
the whole image.

Figure 11.10 presents the result after extraction of road segments with
parallel sides and initialization of intersections.

FIGURE 11.10
Intersection initialization after
road segment extraction.
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FIGURE 11.11 (See color insert following page 292.)
Final result after the extraction of intersections.

Finally, Figure 11.11 shows the final extraction result. One can note that
the algorithm has succeeded in extracting badly initialized roads (as road 4).
This is thanks to regularizations term and to the energy of parallelism. Thanks
to the different wavelet coefficient images, the algorithm shows a good robust-
ness with respect to noise on the road surface such as vehicles (case for roads
7 and 9) or ground marking (road 9). It has also managed to overcome
several occlusions caused by trees (road 2) or shadows (roads 3, 6, and 7).

Some roads segmented have not been extracted so precisely: next to
intersections between roads 1, 9, and 10, sides of road 2 are progressively
moving apart. This is due to the presence of a parking lot and numerous
occlusions. For road 11, the initialization far from the road centerline and the
high number of projected shadows have caused a drift in the DoubleSnake,
which has nevertheless kept a correct width.

In matter of intersections, some have been a bit cut, whereas others have
been correctly and precisely extracted.

Figure 11.12 shows a zoom on a T-shaped intersection between roads 5, 7,
and 8. This example illustrates the introduction of breaking points (refer to
the intersection initialization in Figure 11.10). Visually in Figure 11.12, the
intersections have been properly extracted; regularization terms of the
active contours have enabled to overcome local occlusions and an area
with poor contrast. Moreover, the introduction of breaking points at the
intersection has made it possible to extract right angles properly.

11.4.4 Quantitative Assessment

According to the protocol defined in Péteri et al. (2004), eight image inter-
preters have been asked to acquire the road network of this scene. The result
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FIGURE 11.12
Extraction result: zoom at intersection between roads 5, 7, and 8.

is shown in Figure 11.13. The complexity of the scene has generated inter-
pretation variability among the interpreters, particularly for certain road
segments (case for roads 4, 6, 8, and 10) and for almost all the intersections.

In Figure 11.14, a zoom on the intersection between roads 6,7, 9, and 11 is
presented. The tolerance zone (gray areas) and the reference (dotted line)
are extracted from these interpretations (Section 11.3.5). The tolerance zone
width traduces the important difference of judgment among the different
image interpreters.

The contour extracted by the algorithm is drawn as a plain white line.
This example is representative of results that can be obtained: because of
projected shadows and a too distant initialization, road 11 is shifted com-
pared with the reference and is entirely outside the tolerance zone. Con-
versely, roads 6 and 7 have been precisely extracted, are close to the
reference, and completely inside the tolerance zone. Road 9 combines the
two cases: the right side has not been correctly extracted due to a too long
projected shadow that has generated a bad initialization of the intersection.
Inversely, the left side has been very precisely extracted, which has enabled
a good initialization of the intersection. One can notice in Figure 11.14

FIGURE 11.13
Superposition of eight interpretations of
the scene.
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FIGURE 11.14

Extracted road (white plain line),
reference (dotted line), and toler-
ance zone (in gray).

that some intersections have been truncated a bit, whereas others have been
correctly extracted.

Visual analyses are confirmed by numerical values deriving from
the reference and the tolerance zone. Geometric criteria, reported in
Table 11.1, also show a global match between the extracted network and
the reference. Lengths of the extracted network and the referenced one are
similar (about 4% of the relative difference). Difference between surfaces is
small for road segments (2.2%). It is 16.9% for the intersections that have
been more difficult to extract.

The Hausdorff distance, traducing the maximum discrepancy with the
reference, is an average of 2.8 m for road segments, and of 4.9 m for the
intersections.

Concerning the tolerance zone (Table 11.2), more than 70% of road sides
are inside it, which is a good result considering the scene complexity and
the noise in it. The rate of 52.5% for the intersections traduces the depend-
ence of the IntersectionSnakes concerning the initialization provided by
DoubleSnakes, and even before, by the tracking algorithm.

Indeed, a shift in the position of DoubleSnakes points located on the circle
(see Figure 11.14) will generate a shift in the final result of the intersection
extraction.

TABLE 11.1

Geometric Criteria on Lengths and Surfaces

Length Surface
Relative Relative
Difference (m) Difference (%) Difference (m?) Difference (%)
Road segment 36 1.9 294 2.2
Intersections 69 11 1156 16.9

Total 105 4.1 1410 7.0
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TABLE 11.2

Percentage of Road Inside the Tolerance Zone

Extracted Road

Road segments 71.3%
Intersections 52.5%

11.4.4.1 Gain in Time

Different interpreters have been timed during the scene acquisition process.
For some highly occulted roads, they needed several successive adjust-
ments. Including the possible rectification duration, the algorithm enables
a gain of time that can be estimated by a factor of 10 compared with manual
acquisition. This gain in time is potentially very promising for practical
applications.

11.5 Conclusion and Prospects

This chapter deals with the use of high-resolution satellite images for road
network extraction. A state-of-the-art on road extraction method has been
proposed, describing two kinds of approaches for road extraction (linear
and surface methods). These methods apply mainly according to the spatial
resolution of the processed images and the scale of interest.

A global method for extraction of road networks from high-resolution
satellite images has been then proposed. It aims at meeting the strong
demand for automatic creation and update of maps, especially over urban
areas, which could benefit the most from high-resolution imagery.

This method is modular and takes advantage of the cooperation between
a linear representation of the road (graph module) and a surface represen-
tation (reconstruction module). Its application and evaluation on a Quick-
Bird image over an urban area enhance the good behavior of the algorithm,
even in the presence of artifacts. The method has also been applied on
several other high-resolution images, coming from the IKONOS, QuickBird,
or SPOT 5 satellites. In Péteri and Ranchin (2003), the method is applied on a
semirural context, less noisy than urban environment: the inclusion rate in
the tolerance zone reaches 90% for the roads and 80% for the intersections.
The limit case of application of the method is reached on a 25 cm urban
scene of the French Geographical Institute airborne camera (Péteri, 2003): at
this very high spatial resolution, the method of road model is indeed not
valid anymore and needs additional information.

Even if the method should be tested on a high number of cases to study its
limits and its sensitivity to parameters, the algorithm enables a significant
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gain in time for the human operator (from a factor 6 to a factor 10, depend-
ing on the scene complexity). The next step of the work is to test the
algorithm in operational conditions to evaluate the benefits of such an
approach for the production of surface road maps.

One advantage of the proposed method is the use of few information
sources. However, its modularity enables the introduction of external
data. For instance, the method could benefit from the integration of dedi-
cated works on intersections: one could mention the work of Boichis (2000),
which proposes a precise extraction from a database of different types of
intersections, including roundabouts. The elevation information could also
enable to solve some ambiguities. One could consider using it at the end of
the extraction process to distinguish the roadsides from the top of the
buildings. Using multispectral images could also help the extraction pro-
cess. For instance, the vegetation index (NDVI) can enable to mask trees
along the roads and to restrict the zones to be extracted. Thermal infrared
images can bring indications of the presence of moving vehicles, traducing
potential roads.

While introducing external data, one should however take care of not
significantly increasing the complexity and the computational time of the
algorithm. Moreover, the gain in precision and reliability should be consis-
tent with operational needs.
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12.1 Introduction

Recent advances in imaging spectroscopy have shown capabilities to derive
physical and chemical material properties on a very detailed level (Clark,
1999) with the potential of hyperspectral remote sensing to study and
survey transportation assets and road surfaces being mentioned on several
occasions (Usher and Truax, 2001; Gomez, 2002; Herold et al., 2004). Con-
sequently, one would raise the questions: What are common spectral char-
acteristics of roads and how are specific road surface conditions reflected in
the spectral characteristics of these surfaces? The Santa Barbara asphalt road
spectra library was developed to provide generic understanding about the
spectral properties of road surfaces in various conditions and with different
distresses (Herold and Roberts, 2005). The following examples and inter-
pretations represent a subset of this spectra library and should support
remote sensing researchers, transportation scientists, and others in their
study of road surface conditions.

In general, spectral libraries contain pure spectral samples of surfaces,
including a wide range of materials over a continuous wavelength range
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with high spectral detail and additional information and documentation
about surface characteristics and the quality of the spectra (i.e., metadata). In
February 2004, a ground spectra acquisition campaign was conducted in the
area of Santa Barbara/Goleta, California. Ground spectra were acquired
with an analytical spectral devices (ASD) full range (FR) spectrometer
(Analytical Spectral Devices, Boulder, Colorado, USA). The FR spectrometer
samples a spectral range of 350-2400 nm. The instrument uses three detectors
spanning the visible and near-infrared (VNIR) and shortwave infrared
(SWIR1 and SWIR?2), with a spectral sampling interval of 1 nm. FR field
spectrometer data are widely used and considered to provide accurate and
high-quality spectral measurements. All acquired targets are documented
and integrated into a spectral library, which is made available here.
A pavement condition index (PCI) and a structure index (SI) were derived
parallel from roadware (http://www.roadware.com) in situ vehicle inspec-
tions in December 2002. PCI and SI are a single road performance indicator
with a scale usually between 0 and 100. A road surface in perfect condition
would receive a score of 100 for both and deduct values for each in situ
measured type and intensity of distress are subtracted. The spectra were
preprocessed to apparent surface reflectance. For more detail on spectra
acquisition and processing, refer to Herold and Roberts (2005).

12.2 Spectral Properties of Asphalt Road Surfaces

Asphalt pavements consist of rocky components and asphalt mix (or hot mix
or bitumen). The mineral constituents of the crushed stone rocky components
can vary depending on the geological region but usual major components in
the aggregate are dominated by SiO,, CaO, and MgO (Robl et al., 1991). The
asphalt mix consists of oil, asphaltenes, and resins. The oils add viscosity and
fluidity; asphaltenes cause strength and stiffness; and resins are important
for interfacial adhesion and ductility in the pavement. This makes bitumen a
complex substance that can vary in composition depending on the source of
the crude oil and on the refining process. The chemical nature essentially is a
mix of hydrocarbons with 50-1000 carbon atoms plus enough hydrogen,
oxygen, sulfur, and nitrogen substituents to give some of the molecules a
polar character. More specifically, the chemical components of asphalt
mix are carbon (80%-87%), hydrogen (9%-11%), oxygen (2%—-8%), nitrogen
(0%—1%), sulfur (0.5%-1%), and some trace metals.

Figure 12.1 presents three spectral samples of pure road asphalt with no
obvious structural damages or cracks. The age of the pavement, the PCI, and
the structure index are shown with image examples of the surface. Spectrum
A reflects a recently paved road. The surface is completely sealed with
asphalt mix. The spectral reflectance is generally very low and hydrocarbon
constituents determine the absorption processes. The minimum reflectance
is near 350 nm with a linear rise toward longer wavelengths. Hydrocarbon
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FIGURE 12.1

Spectral effects of asphalt aging and deterioration from the in situ spectral measurements (the
major water vapor absorption bands are interpolated).

compounds exhibit electronic transitions arising from excitations of bond-
ing electrons in the UV and visible region causing this strong absorption.
The absorption is broad and there are no individual resolvable absorption
bands in this spectral region due to the complex hydrocarbon nature of
bitumen. Overlapping electronic processes with their absorption strength
decreases toward longer wavelength causes these absorptions. This broad
overall reflectance increase toward longer wavelengths is also seen in coals,
oil shales, and chars (Cloutis, 1989; Hoerig et al., 2001).

For longer wavelengths, spectrum A in Figure 12.1 exhibits some obvious
absorption features in the SWIR. However, there are a large number of
fundamental organic absorption bands: aromatic C-H stretch, symmetric
and asymmetric stretches and bands of CH; and CH, radicals, carbonyl/
carboxyl C-O stretch and the aromatic carbon stretch, and numerous
combinations and overtones (Cloutis, 1989), the low overall reflectance
suppresses most of the distinct features except the most prominent ones
near 1700 nm and from 2200 to 2500 nm. Various C-H stretching overtones
and combination bands dominate the feature in the 1700 nm region. If this
feature is well developed, it is asymmetric and reflects a doublet with the
strongest absorption at 1720 nm and a second less deep one at 1750 nm. The
region between 2200 and 2500 nm is affected by numerous overlapping
combination and overtone bands (Cloutis, 1989; Kuehn et al., 2004). This
causes the strong reflectance decrease beyond 2200 nm. The absorption is
strong in the 2300 nm region with a well-developed doublet at 2310 and
2350 nm with the 2310 nm feature, which is usually the stronger one.

Spectrum C in Figure 12.1 shows an old, deteriorated road surface. The
image of the surfaces shows that the asphalt seal is widely eroded and the
remaining asphalt mix has undergone an aging process. The natural aging
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of asphalt is caused by reaction with atmospheric oxygen, photochemical
reactions with solar radiation, and the influence of heat, and results in three
major processes (Bell, 1989): the loss of oily components by volatility or
absorption, changes in composition by oxidation, and molecular structuring
that influences the viscosity of the asphalt mix (steric hardening). The loss of
oily components is a relatively short-term process; the other two are more
long-term processes. With the erosion and aging of the asphalt mix, the road
surface is less viscous and more prone to structural damages like cracking.

The spectral effects represent a mixture of both the exposition of rocky
components and the asphalt aging. The vanishing of the complex hydro-
carbon components causes a general increase in reflectance in all parts of
the spectrum. This difference is highest in the NIR and SWIR with >10%
reflectance. The electronic absorption processes in the visible region reflect
the dominance of minerals and result in a concave shape with distinct iron
oxide absorption features. They appear for 520, 670, and 870 nm. The
typical SWIR hydrocarbon absorption features in 1700 and 2300 nm
regions vanish for older road surfaces and are replaced by mineral absorp-
tions. For example, there is a significant change in slope in the transition
from hydrocarbon to mineral absorption. For older road surfaces, the slope
increases between 2120 and 2200 nm as the 2200 nm silicate absorption
gets more prominent. The slope is higher for new pavement materials
2250-2300 nm, which correlates with the intensity of the 2300 nm hydro-
carbon feature.

Spectrum B in Figure 12.1 represents a road pavement of intermediate age
and condition. The surface exhibits both the asphalt mix and exposed
minerals. The spectral characteristics reflect this intermediate stage by
showing absorption features from hydrocarbons and minerals. The intensity
and characteristics of the features are less distinct than for “pure” very new
and very old road surfaces. This shows that the aging and deterioration
process is gradual and there is strong spectral evidence that this transition in
surface material properties can be described in hyperspectral datasets.
It should be noted that a road aging from 1 to 3 years, a change in PCI of
100 to 86, and a constant structure index of 100 have about the same spectral
impact than from 3 to >10 years, a PCI decrease from 86 to 32, and a
structure index decrease from 100 to 63. This suggests that the spectral
signal is very sensitive to early stages of aging and deterioration and later,
more severe road damages have a lower spectral impact.

Street paint also represents hydrocarbons with highly reflective proper-
ties (Figure 12.2). Spectra A and B of Figure 12.2 show reflectance values up
to 55% in the VNIR region. The difference between spectra A and B in the
visible region is due to color since spectrum B represents yellow street paint
and blue wavelengths are absorbed. The street paint graphs highlight a
typical asymmetric hydrocarbon doublet with the strongest absorption at
1720 nm and a second less deep one at 1750 nm (Cloutis, 1989). Numerous
overlapping combinations and overtone bands cause the strong reflectance
decrease beyond 2200 nm including a well-developed doublet at 2310 and
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FIGURE 12.2
Spectral characteristics of street paint in different colors vs. normal asphalt pavement from the
in situ spectral measurements (the major water vapor absorption bands are interpolated).

2350 nm with the 2310 nm feature, which is slightly stronger. These features
nicely compare with characteristics of newly paved road surfaces (Figure
12.1), hence with different absorption intensity. From a remote sensing
perspective, the presence of street paint will increase the brightness of a
road surface especially in the VNIR region and emphasize the hydrocarbon
absorptions in the SWIR.

12.3 Typical Asphalt Road Distresses

The most common road distress and indicator of pavement quality is
cracking. Cracks, especially with Alligator pattern, indicate structural fail-
ure of the road surface due to traffic loads. Cracks allow moisture to
infiltrate, increase road surface roughness, and may further deteriorate to
potholes.

Figure 12.3 shows the spectral effects of structural damages or Alligator
cracks with different severity on the spectral signal. The general road
surface reflectance of the pavement is similar to spectrum C in Figure 12.1,
with the spectrum dominated by mineral absorption processes. The main
spectral impact of cracking is on object brightness in all parts of the spec-
trum. The increasing surface roughness and shadows cause reflectance
differences of up to 7%—-8% in the NIR and SWIR between the actual
pavement and high-severity cracks. The concave shape in the VNIR region
is more obvious for brighter, noncracked road pavements. There is also an
indication that the cracked surfaces have more intense hydrocarbon absorp-
tion features in the 1700 and 2300 nm regions. The asphalt mix erosion and
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Spectral effects of severity of structural road damages from the in situ spectral measurements
(the major water vapor absorption bands are interpolated).

oxidations happen on the road surface. Cracking exposes deeper layers
of the pavement with higher contents of the original asphalt mix, which
is then manifested in increased hydrocarbon absorption features. This
fact highlights the contrary spectral signal between road deterioration of
the pavement itself (Figure 12.1) and the severity of structural damages
(Figure 12.3). An aging road surface gets brighter with decreasing hydrocar-
bon absorptions; structural distresses cause less reflectance with increasing
hydrocarbon features. Although the reflectance difference and intensity of
the hydrocarbon absorptions are less for cracks than for new asphalt surfaces,
this fact indicates certain limitations in hyperspectral remote sensing of road
conditions.

A second common road distress is raveling. The process of raveling
describes the progressive dislodgement of pavement aggregate particles.
This is mainly caused by increasing loss of bond between aggregate par-
ticles and the asphalt binder. Effects are the accumulation of loose aggregate
debris on the road surface and less friction of vehicles, increasing surface
roughness, and collecting water in the raveled locations causing vehicle
hydroplaning.

The spectra A and B in Figure 12.4 compare a normal pavement with a
raveled road surface. The raveling exhibits larger amounts of rocky com-
ponents and raveling debris (gravel) on the surface. This generally increases
the brightness of the surface due to increasing mineral reflectance and
less prominent hydrocarbon absorptions. The raveling spectrum shows
characteristics from both the normal pavement and spectrum C. Spectrum
C reflects a gravel parking lot surface. In comparison with the pavements,
this surface has higher reflectance in the visible and photographic
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FIGURE 12.4
Spectral effects of raveling from the in situ spectral measurements (the major water vapor
absorption bands are interpolated).

near-infrared due to the missing hydrocarbon absorptions. The mineral
composition is reflected in more prominent features from iron oxide and
other minerals like a calcite feature near 2320 nm.

12.4 Asphalt Road Surface Maintenance

Besides rehabilitation treatments, there are several maintenance methods
to improve and maintain the quality of road surfaces. Their spectral char-
acteristics are compared with a common asphalt road surface (Figure 12.5).
Spectrum A shows a slurry crack seal that helps to prevent water or other
noncompressible substances such as sand, dirt, rocks, or weeds entering
the crack. Slurry seal crack fillings are mixtures of emulsified asphalt or
rubberized asphalt spread with a machine onto the asphalt surface.
This treatment material has a constant low reflectance on the order of 5%
reflectance. Only very minor hydrocarbon absorption features are repre-
sented, which are similar to the ones found for parking lot surfaces (Herold
et al., 2004).

Patches are used to treat an area of localized road distress. The material is
similar to a usual pavement and spectrum B has similarity to a newly paved
road (see Figure 12.1). Chip seal treatments include spraying an asphalt
binder on the pavement, then immediately covering by a single layer of
uniformly sized chips. The new surface treatment is then rolled to seat the
aggregate, and broomed to remove any loose chips. The chip seal spectrum
C has significantly higher reflectance than a usual asphalt road surface with
more prominent mineral absorption features, similar to a raveled road
surface (Figure 12.4).
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FIGURE 12.5

Spectral effects of different road surface treatments from the in situ ground spectral measure-
ments. Spectrum D is an untreated road surface corresponding to spectrum C in Figure 12.2 (the
major water vapor absorption bands are interpolated).

12.5 Other Surface Features

Road surfaces contain a variety of other surface features. Their spectral
effects presented for asphalt road surfaces are exemplified in Figure 12.6.
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FIGURE 12.6

Spectral effects of different road surface features from the in situ ground spectral measure-

ments. Spectrum D is an untreated road surface corresponding to spectrum C in Figure 12.2 (the
major water vapor absorption bands are interpolated).
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Spectrum A shows an older crack containing green vegetation. This has a
strong impact on the spectral response exposing spectral features from
chlorophyll, water content, and lignocellulose typical for vegetation (Herold
et al.,, 2004). The accumulation oil on the pavement decreases the overall
reflectance with more prominent hydrocarbon absorption characteristics
(spectrum B). The metal manhole in spectrum C also indicates a decreasing
reflectance compared with a usual pavement along with stronger iron oxide
signal at the absorption bands at 520, 670, and 870 nm.

12.6 Summary and Remote Sensing Prospects

Asphalt road surfaces reflect distinct spectral responses from a number of
absorption features. New asphalt pavements are dominated by hydrocarbon
absorptions. Pavement aging and erosion of the asphalt mix result in a
gradual transition from hydrocarbon to mineral absorption characteristics
with a general increase in brightness and changes in distinct small-scale
absorption features. Thus, there is spectral evidence for the aging and deg-
radation processes of in situ asphalt pavements. Structural road damages
(e.g., cracks) indicate a somewhat contrary spectral variation. Cracking
decreases the brightness and emphasizes hydrocarbon absorption features.
In addition, there are a number of additional features commonly found on
road surfaces including gravel (i.e., raveling), metal, and vegetation. All show
spectral impacts and add to the spectral complexity of asphalt road surfaces.

From a remote sensing mapping perspective, the general material charac-
teristics and variability of road surfaces cause problems for their accurate
spectral detection within urban areas. Other impervious surfaces (i.e., shingle
and tar roofs) show similar material compositions (i.e., hydrocarbons) and
are easily confused in the urban land cover and material classification process
(Herold et al., 2003a,b). Additional information about three-dimensional
urban structure (ie., from LIDAR data) or from spatial image analysis
algorithms is required to resolve such spectral similarity (Herold and
Roberts, 2006). There have been positive examples of characterizing asphalt
pavement deterioration using spectral information (Herold and Roberts,
2005). Other examples have successfully detected hydrocarbons from hyper-
spectral imagery (Hoerig et al., 2001; Kuehn et al., 2004). Understanding
spectral characteristics and absorption processes (as provided here) is cer-
tainly essential for progress in this arena. In addition, fine spatial resolution
on the order of 0.5 m ground instantaneous field of view (GIFOV) is required
for clear identification of spectral road deterioration effects and to avoid false
detections. Given the three-dimensional urban surface structure, roads are
the “bottom layer” that can be covered or shadowed by surrounding surfaces
such as trees, buildings, or cars.

In contrast to asphalt surfaces, concrete pavements (most commonly
portland cement concrete) are composed of cement, mineral aggregates
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FIGURE 12.7
Spectral characteristics of concrete road surfaces from the in situ spectral measurements. The
major water vapor absorption bands are interpolated.

including gravel or sand, water, and various other ingredients (admixtures
and additions). Portland cement consists of a mixture of oxides of calcium,
silicon, and aluminum and possibly some components of sulfate (i.e., gyp-
sum). The material characteristics are reflected in distinct spectral signatures
(Figure 12.7). Spectra of high reflectance dominated by the mineral absorp-
tion features are characteristic of concrete road surfaces. From a road aging
point of view, Figure 12.7 highlights a general decrease in brightness for older
concrete surfaces. This is contrary to asphalt roads that exhibit increasing
brightness for older road surfaces. In situ oxidation, deterioration, and accu-
mulation of dust and hydrocarbons may be responsible for such spectral
effects. Certainly, the characteristics of concrete road surfaces should be
studied in more detail and to the level asphalt roads have been investigated
here. A generic spectral understanding is needed to further develop remote
sensing applications for such transportation infrastructure surveying.
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13.1 Introduction

The urban three-dimensional (3D) model has increasingly been needed for
various applications such as town planning, microclimate investigation, and
so on. Traditional photogrammetry is an important tool to acquire the 3D
data. However, the photogrammetric method has encountered difficulties

251



252 Remote Sensing of Impervious Surfaces

for complex scenes in dense urban areas due to the failures of image
matching, which are primarily caused by, for example, occlusions, depth
discontinuities, shadows, poor or repeated textures, and the lack of a model
of man-made objects (Zhou et al., 1999). For this reason, the extraction of
buildings and digital terrain model (DTM) are currently carried out using
human-guided interactive operations, such as stereo compilation from
screen. This process is both costly and time-consuming.

In recent years, light detection and ranging (LiDAR) data have been widely
applied in urban 3D building extraction. A variety of methods have been
proposed for this purpose. Yoon and Shan (2002) grouped the methods into
two categories: the classification approach and the adjustment approach. The
classification approach detects the ground points using certain operators
designed on the basis of mathematical morphology (Lindenberger, 1993;
Vosselman, 2001), terrain slope (Axelsson, 1999), or local elevation difference
(Wang et al., 2001). The refined classification approach uses triangulated
irregular network (TIN) data structure (Axelsson, 2000; Vosselman and
Mass, 2001) and iterative calculation (Axelsson, 2000; Sithole, 2001) to con-
sider the discontinuity in the LiDAR data or terrain surface. The adjustment
approach uses a mathematical function to approximate the ground surface,
which is determined in an iterative least adjustment process while outliers of
nonground points are detected and eliminated (Kraus and Pfeifer, 1998,
2001). On the other hand, Baltsavias et al. (1995) discuss three different
approaches: an edge operator, mathematical morphology, and height bins
for detection of objects higher than the surrounding topographic surface.
These approaches were used by authors like Haala (1995) and Eckstein and
Munkelt (1995). They analyzed the compactness of height bins or used
mathematical morphology (Eckstein and Munkelt, 1995; Hug, 1997). Other
building extraction methods include extraction of planar patches, some of
which use height, slope, and aspect images for segmentation (e.g., Morgan
and Tempfli, 2000; Morgan and Habib, 2002).

Although plenty of efforts have been made in LiDAR data processing for
urban 3D data extraction, all of the existing methods are not yet mature
(Vosselman and Maas, 2001; Yoon and Shan, 2002). It has also been realized,
also by many other photogrammetrists, that methods based on a single
terrain characteristic or criterion can hardly obtain satisfactory results in
all terrain types. For this reason, this chapter presents a combination of
LiDAR data and orthoimage data for the urban 3D digital building model
(DBM), digital surface models (DSM), and DTM generation.

13.2 Building Detection and Extraction
13.2.1 Edge Detection

As described earlier, the building extraction based on either single image
data or single LiDAR data cannot reach a satisfying result. One of the main



Urban 3D Building Model from LiDAR Data and Digital Aerial Images 253

causes is the building’s breaklines. It is thus very important to extract the
breaklines before applying any interpolation technique; especially, the
breaklines can be used to identify the sudden change in slope or elevation.
Therefore, the detected breaklines will serve the purposes of both interpol-
ation and building extraction. Almost all the breaklines represent parts of
artificial objects in urban areas, while a breakline (edge) in digital image is a
sharp discontinuity in gray-level profile. Thus, our implementation for
building edge detection is to combine LiDAR data and orthoimage. LOG
algorithm is first employed to extract the edges, and the LiDAR data are
coregistered to orthoimage for extracting the building’s edges using the
principle that the buildings are higher than their surrounding topographic
surfaces. After that, some postprocessing, such as merging line segment into
line and deleting isolated point and line segment are carried out. Finally, a
human—computer interactive operation is designated for extraction of com-
plete edges of the objects. These extracted edges of objects, associated with
the horizontal coordinates, are coded and saved in files in vector format for
generating the DBM. The details include the following;:

1. Coregistration of LiDAR data and orthoimage. Orthoimage is a geo-
coded image, in which the geodetic coordinates for each pixel can
be specified. The LiDAR data contain the geodetic coordinates.
Thus, the coregistration of the two datasets is simple when their
data are the same.

2. Line extraction of building’s roof. Although many line feature extrac-
tion algorithms have been developed earlier, the line feature
extraction in this chapter is conducted by (i) edge detection by
LOG algorithm; (ii) edge vectorization by contour-tracing algo-
rithm; (iii) initial straight line generation by applying splitting—
merging algorithm to edge contour; (iv) definition of statistic
values of lines to refine possible straight lines using a least-squares
technique; and (v) establishment of image polygon. The details of
the steps are

(i) Detecting edges from orthoimage. The LOG algorithm is used to
detect the edge of buildings, and then the contour-tracing algo-
rithm is employed to link those discrete edges into a continuous
curve. In these steps, a lot of edge contour, such as roads, park-
ing lot, lake, and so on are extracted. This means that itis hard to
disseminate a parking lot and house if only the extracted edge
contour information is employed. For this reason, the LiDAR
data will also be used for identifying the building.

(ii) Detecting edges from LiDAR data. The extraction of buildings is
based on a simple fact that buildings are higher than their
surrounding topographic surface. The ability of the laser to
penetrate vegetation, thus giving an echo from several
heights, makes it possible to distinguish between the two
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classes: man-made objects and vegetation. The extraction
procedures are based on an implementation of the minimum
description length (MDL) criterion for robust estimation
(Rissanen, 1983; Axelsson, 1992). A cost function (described
later) is formulated for the two classes: buildings and vegetation
based on the second derivatives of the elevation differences.
The algorithm is as follows:

Assume that buildings consist of connected planar surfaces,
for example, many neighboring TIN facets. Similarly, neighbor-
ing scan line points will lie on a straight line with the second
derivatives of elevation differences zero. Buildings’ roof ridges
and other changes of direction of the buildings’ roofs will cause
a nonzero value of the second derivatives with respect to the
elevation. The mathematical model is formulated along a scan

line as
%z : o
pie 0 point C straight line segment
Pz . .
P #0 point C breakpoint
where

x is the direction along the scan line
z is the elevation

The cost function, or description length (DL), of the building
model contains three parts. A detailed description can be
found in Axelsson (1992).

(iif) Forming an initial straight line. Combing the results of the
extracted edges from the LOG algorithm and LiDAR data,
we can easily identify the building edge from other edges
because the elevation of the building’s edges is higher than
the other edges. This chapter only considers the building, and
thus other edges will not be taken into account. For the build-
ing edges detected from both orthoimage and LiDAR data,
they are merged and processed using the splitting-merging
algorithm to extract initial straight lines. In this method, a
threshold, perpendicular distance of each edge point to a
line no more than 2.0 pixels, is set up to detect the short
straight line. On the other hand, this method results in some
long straight lines, which may be split into several discontinu-
ous short lines (line segments). For this reason, grouping and
merging those short lines into a reasonable line is conducted
using the colinear chain algorithm. After this method is car-
ried out, many straight lines can be initially extracted.

(iv) Refining the straight line. The extracted straight lines in step
(iif) deviate from their real edge positions due to noises.
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For this reason, we employed the least-squares line-matching
technique to remove the false lines and refine the straight
lines. The basic idea is

Assuming that L(x,y) and L'(x',y’) represent the extracted
and real lines (i.e., at the real edge position), their relationship
is expressed by an affine transformation, that is,

L(x,y) = L'(a1 + axx + asy, by + bax + bsy), (13.1)

where aq, a5, a3, by, by, and b3 are parameters of the affine
transformation. Once they are determined, the straight line
L’ can be located. Assuming that f(x,y) and g(x,y) represent
the intensity of the extracted edge and real edge, theoretically,
we have f(x,y) =g(x,y). However, with the existence of noise
e(x,y), that is, flx,y) — g(x,y) =e(x,y). Combining with Equation
13.1 and linearizing them, we have

fxy) —v(xy) = go(x,y) + gxdar + guxdas + g ydas
+gydb1 + gdebz + gyydbg (13.2)

For any pixel, one observation equation can be established
using Equation 13.2. For a straight line, all observation equa-
tions are expressed by a vector form, that is,

—v=AX -1, (13.3)

where
I is the vector of intensity error between f(x,y) and g(x,y)
X denotes parameters of the affine transformation (i.e., a1, ao,
as, bl/ bz, and b3)
A is the coefficient matrix
v is the residual vector

The parameters of the affine transformation can be solved via
a least-squares estimation. The standard deviation (variance)
0y is calculated and used as the criterion to judge whether to
remove a “‘misextracted” straight line. From statistics, if a
pixel’s variance, o;, which can be calculated from the variance
matrix, is greater than 3 oy, this point will be removed; other-
wise, the pixels are kept. The results from this method can
better locate a building straight line.

(v) Image polygon establishment. Once the work is finished, a group
of lines is selected to form building’s polygon. To this end, a
line segment is merged into a line and an isolated point is
deleted. Moreover, a human—computer interactive operation
is designated for final building extraction.



256 Remote Sensing of Impervious Surfaces

Laser footprints

FIGURE 13.1
LiDAR footprints on building

roof, ground, and vegetation. 7

13.2.2 Building Polygon Extraction

After the complete edges of buildings have been detected, the algorithms for
forming building polygon and extracting building geometrical parameters
will be performed. The main steps are (1) linking the 2D complete image
edges of the building with 3D LiDAR data using horizontal coordinates and
(2) determining the three-dimensional building breaklines from image
edges and exactly estimating the building boundary via integrating building
edge results from both orthoimage and LiDAR data. Internal breaklines can
be determined by intersecting the adjacent planar facades within the build-
ing. It is known that the LiDAR footprints do not exactly match building
boundary. Therefore, one cannot determine the building boundary with
only height data unless the density of LiDAR point cloud is like a gray
image. Figure 13.1 shows a portion of a building near its boundary. Some
laser footprints are located on the building roofs, whereas others are on the
ground. The segments of LiDAR data are therefore from the image seg-
ments, which describe various buildings. Therefore, we have selected the
georeferenced images whose 2D geodetic coordinates are known. We can
directly use the horizontal coordinates of the boundary edges to obtain each
3D building model. The building boundary in addition to the internal
facade parameters and the internal 3D breaklines will be the result of the
building extraction process.

13.3 Creation of DBM and DTM
13.3.1 Establish Relationship between Building and LiDAR Data

After each building polygon is established, the next step is to establish the
relationship between the building and LiDAR data for establishing 3D
DBM. The orthoimages are stored as raster data, whereas the LiDAR point
cloud is collected along the track. The linkage of the two datasets is imple-
mented by the horizontal coordinates. Thus, we determine which LiDAR
footprint is inside of the building boundary. We employ a filling algorithm,
whose steps are (note that a rectangle is selected as a sample in Figure 13.2)
as follows:
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Ay

Footprints X

R FIGURE 13.2
| 3 Determination of inside footprints in a
I building using filling algorithm.

=0

1. Create the polygon of building roof: The edge of a roof surface that
we extracted earlier is a set of point coordinates, for example
(1, Yo X2, Yo5een e ; Xn, Yn). We can obtain the surface polygon
by connecting the edge points orderly in this step (see Figure 13.2).

2. Obtain the boundary of the polygon of the roof surface: For a given roof
surface in Figure 13.2, the coordinates of four corner points can be
obtained by

Corner 1: (X1, Yq)
Corner 2: (X5, Y,)
Corner 3: (X3, Y3)
Corner 4: (X4, Yy)

Corner n: (X, Y,)

3. Obtain the reduced LiDAR footprints within the boundary rectangular:
For speeding up the calculation, we reduce the LiDAR points
via the test to see whether these points are in the roof surface
or not. By simple comparison of the LiDAR point coordinates
and the rectangular corners, we can obtain the reduced LiDAR
points.

4. Determine the LiDAR footprints in the reduced points: The determin-
ation of the LiDAR footprints in the reduced points that are inside
or outside is carried out by filling the algorithm. This algorithm
was realized by Microsoft MFC function, that is, CRgn::PtInRegion
in MS VC*™.

This procedure is then repeated for each building roof until all buildings are
implemented.
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13.3.2 Interpolation Algorithm via Planar Equation

After we obtained a complete extraction of building roofs, we will be able to
obtain the LiDAR footprints within building roofs and store them into an array.
Now, each building has its LIDAR footprint data, associated with building
boundary information. We use the information to generate the DSM of urban
areas. There are many interpolation methods available such as inverse distance
weight (IDW), which calculate the unknown elevation by using the close
known neighbors and give them different weight on the basis of the distance
between them and the unknown points. Here, we suggest a method for LIDAR
data interpolation. The basic principle is to fit the building roof using planar
equation, which is solved by the LiDAR footprints within building roof bound-
ary, which we already obtained earlier. The planar equation is

AX+BY+CZ=1, (13.4)

where
A, B, and C are unknown parameters

X, Y, and Z are coordinates of LiDAR data

At least three LiDAR footprints are requested to determine the planar
equation (building surface). However, usually, more than three footprints
are measured in each surface. The least-squares method is thus employed to
calculate the parameters of the planar equation. The equation is

X1, Y1,2Z4 A 1
wn el s
Xons Y, Zon ¢ 1

where m is the number of LiDAR footprint in a building roof. This interpol-

ation method for DSM generation via planar equation and the surface
boundary can reach higher accuracy than the other method.

13.3.3 Establish Digital Building Model

In this chapter, an object-oriented data structure has been developed for the
description of DBM. This model makes best use of the LiDAR datasets for
better creating DBMSs, for example, image boundary, which provides the
boundary information of building roof and the LiDAR data, which provide
height information of buildings. In this model, each building is an object of
the building class, that is, an entity of the class. One building object consists
of the attributes of the building ID, roof type ID, and the series of the roof
surfaces. Each surface of a building object is also considered as an object.
The surface class comprises the surface boundary, the LiDAR footprints
within the building roof, and planar equation parameters describing the
building roof. The boundary is composed of a set of points. One of the
advantages of this model is its flexibility for future expansion, for example,
adding other building attributes, such as wall surfaces, texture, and so on
(see Figure 13.3). We implement this data structure in Section 13.3.4.
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Building object (an object-orientated object)

Building 1D
Building roof type 1D
Roof surfaces series

—Roof surface 1
Surface boundary 1

Planar equation 1
—Roof surface 2
H Surface boundary 2

Planar equation 2

—Roof surface n
Surface boundary n FIGURE 13.3
Planar equation n Object-oriented digital building model.

13.3.4 Create Digital Terrain Model (DTM)

LiDAR data present two aspects: ground and buildings. Thus, the data could
be segmented into two types of regions corresponding, on one hand, to a
surface linked to the ground, and, on the other hand, to a surface linked to
surface objects. Therefore, DTM can be generated by separation of the surface
objects from the DSM. DBM has been generated earlier, and DTM can be
generated by removing the surface objects. The steps are as follows:

1. Based on the extracted boundary of the building in image process-
ing, we can get the horizontal coordinates of these boundary points

2. Seeking for corresponding LiDAR footprints according to the
planimetric coordinates

3. Removing those LiDAR footprints whose planimetric coordinates
are the same as that of the other building boundary

4. Interpolating the DTM via IDW method

13.4 Experiments
13.4.1 Datasets

13.4.1.1 Control Field

The Virginia Department of Transportation (VDOT), contracting to Wool-
pert LLC at Richmond, Virginia, has established a high-accuracy test field in
Wytheville, Virginia. This control field contains 19 targeted ground points
for airborne LiDAR data accuracy evaluation. The target points are spaced
at least several kilometers apart and distributed in a generally east-west
direction. The field extends from the west side of Wytheville east ~11.4 mi
with a north-south extent of ~4.5 mi centered on Wytheville, that is, from
latitude 36°54'16” to 36°59'54” N, and from longitude 81°08'23” to
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Wytheville, Virginia: VDOT I-77/1-81
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FIGURE 13.4

Geodetic control test field in Wytheville, Virginia.

81°49'08” W (see Figure 13.4). The point accuracy can attain standard devi-
ations better than 0.02, 0.02, and 0.01 m in X, Y, and Z, respectively. This
level of accuracy is comparable with geodetic accuracy standard for Order C
(1.0 cm plus 10 ppm).

13.4.1.2 Aerial Image Data

The analog black-and-white aerial photographs were also acquired along
east-west flight lines over the test field on September 19, 2000 at a scale of
1:1000. The Woolpert camera at a focal length of 153.087 mm and Kodak
2405 film with a 525 nm filter were employed. A total of 96 exposures with 4
equal length flight lines (see Figure 13.4) were conducted. All the elevation
data were referenced to NAVD88 datum; horizontal data were referenced to
NADS3 Virginia State Plane Coordinate system. Aerial photos have a pixel
resolution of 2.0 ft, and the orthoimage was produced using differential
rectification techniques.

13.4.1.3 LiDAR Data

The LiDAR data were collected using the Optech 1210 LiDAR system in
September 2000. The LiDAR data at a sampling density of 7.3 ft have an
accuracy (on hard surfaces) of 2.0 ft at least. The specifications for LiDAR
data collection are as follows:

o Aircraft speed: 202 ft/s

* Flying height: 4500 ft above ground level
 Scanner field of view (half angle): +16°

* Scan frequency: 14 Hz
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e Swath width: 2581 ft (1806 ft with a 30% side lap)
¢ Pulse repetition rate: 10 kHz
» Sampling density: average 7.3 ft

13.4.2 Experimental Results

We developed a system for semiautomation of urban 3D model generation
from LiDAR data and orthoimage data using Microsoft Visual C*" under
Microsoft 2000. The system consists of the following modules (Figure 13.5).

1. Create new/open a project: This menu opens an existing project or
creates a new project.

2. Data input (image and LiDAR): This module contains LiDAR data
input, image display, and data format conversion (e.g., for raw
image to bmp image, tiff image format, etc.).

3. LiDAR data check: This module checks the systematic error of
LiDAR via various methods, such as overlay LiDAR data onto
georeferenced image, ground control points checks, and so on.

4. Image processing and interactive edit: This module contains image
filtering, enhancement, edge detection, line feature and area detec-
tion and description, image interpretation, interactive operation,
and so on.

5. DBM generation: This module generates DBM using the object-
oriented data structure described earlier.

6. Urban DSM and DTM generation: This module generates high-
accuracy DSM by applying the method presented earlier.

FIGURE 13.5
Semiautomatic urban 3D model generation (the green points are LiDAR point cloud; the gray
images are aerial images; and the red lines are the detected edges of the building).
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FIGURE 13.6
A patch of the original image (Image ID# 2523).

Meanwhile, conventional interpolation methods, such as IDW,
and bilinear interpolation methods are also available. The DTM
is generated by removing surface objects.

We selected a patch of original photo (Photo ID: 2523) to test our method
(Figure 13.6). This photo covers the city of Wytheville, Virginia. With this
software, a group of experimental results are listed in Figures 13.5 through

13.13. Figure 13.7 is the result of automatic building edge detection, and
Figure 13.8 depicts the detected buildings after human—computer

Trees

Road

House

FIGURE 13.7
Automatically detected building edges.
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Missed
road

FIGURE 13.8
Building edges detected by human—computer interaction operation.

interactive operation. Figures 13.9 through 13.12 depict the DSMs, which are
generated by IDW, Spline, and our algorithm to compare the interpolation
accuracy between our method and other interpolation methods. As seen,
both IDW and Spline interpretation methods cannot reach high accuracy.
The building edges are not very clear. It appears that there are dim slopes to
the ground. In addition, the roof surfaces are rough but most of the real roof
surfaces are planar. Obviously, our interpolation result is much better than
IDW and Spline methods. The edges and the roof surfaces are clearer.
Figure 13.13 is a DBM. The most important fact is that each building is an

Ground Vague
edges

FIGURE 13.9
Result of LiDAR data interpolated by IDW.
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Ground Vague
edges

FIGURE 13.10
Result of LiDAR data interpolated by Spline (the Spline parameters are weight = 0.1, number
of points = 12, type is regularized).

object in our program, which is convenient for future application, such as
visualization.

13.4.3 Discussion

Table 13.1 lists statistic results of house recognition using the proposed
method. As seen, the recognition rate achieves 88%. Those houses that
cannot be recognized are probably too small because more than three
LiDAR footprints are required in the proposed method. The accuracy of

Ground

Edges

FIGURE 13.11
Result of house information extraction by using our method.
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Building
shadow

Building
roof

FIGURE 13.12
Digital building model (DBM) generated by our software system.

DBM is higher than other methods because this method suggests an inte-
gration of aerial image and LiDAR data processing, of which aerial image
processing can recognize the boundary of each house, and LiDAR data
provide elevation information, resulting in higher interpolation accuracy
than other methods, such as IDW and Spline. In addition, this method
requires at least three LiDAR footprints; this means that houses greater
than 21 ft long can be recognized because the spacing size of the adopted
LiDAR point cloud is 7.3 ft. Usually, this requirement can be reached. Thus,
the proposed method is practicable.

FIGURE 13.13
Human-computer interaction for house interpretation, and the number of LiDAR footprints
within a house.
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TABLE 13.1

Successfully Interpreted Rates
of Houses and Roads

Houses
Total 94
Interpreted number 83
Successful rate 88%

13.5 Conclusion

This chapter presented the generation of an urban 3D model, including 3D
DSM and DBM via integrating image knowledge and LiDAR data. A human-
computer interactive operation system has been developed for this purpose.
The main contribution of this chapter is the development of a high-accuracy
interpolation method for DBM/DTM/DSM generation and an object-
oriented building model. In this model, we defined the roof types, roof
boundary coordinates, planar equation parameters, and so on. Especially,
for a roof surface, the model consisted of roof boundary and their planar
equations, which are obtained from the combined processing of LiDAR and
orthoimage data. For the planar equation of each roof surface, we first extract
the LiDAR point data within the building roofs by their spatial relationship
and calculate the planar equation parameters using LiDAR footprints. We
use the planar equation to calculate the grid value within the roof boundary.
The experimental results demonstrated that the developed method for DSM
and DBM generation in urban areas is capable of reaching a high accuracy.
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14.1 Introduction

Site recording and modeling have been important topics in photogram-
metry from its very beginning in the middle of the nineteenth century.
Since then technologies have changed several times fundamentally. Today
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the issue of full automation of all processes involved has led to widespread
research activities in both the photogrammetry and the computer vision
communities. However, progress is slow and the pressing need to produce
precise, reliable, and complete datasets within reasonable time has had
scientists and developers turn toward semiautomated approaches. While
the tasks may differ in terms of required resolution (level of detail) of
models, type of product (vector model, hybrid model, including mapped
texture, attributed model with integrated thematic information), size of
dataset, sensor platform (satellite, aerial, terrestrial), and sensor and data
type (images in various forms, laser scans, scanned maps, etc.), one common
problem remains in all cases and that is the automated extraction of objects
from images. A typical example is the task of automated building detection
and reconstruction, which is difficult for many reasons.

The most common sources of data are 2D images that lack direct 3D
information. Aerial images may differ from each other with respect to
scale, spectral range of recording, sensor geometry, image quality, imaging
conditions (weather, lighting), and so on. Objects like buildings can be
rather complex structures with many architectural details. They may be
surrounded by other disturbing man-made and natural objects. Occlusion
of parts is common and the geometrical resolution may be limited. There-
fore, the corresponding images are of very complex content and highly
unstructured. Solving the problem of building detection and reconstruction
under these conditions is not only of great practical importance but also
provides an excellent test bed for developing image analysis and image-
understanding techniques.

The basic problem in object extraction stems from the fact that automated
image understanding is still operating at a very rudimentary level. This
applies both to close-range and aerial/space applications. However, there is
a remarkable relation between image scale and success rate in extraction. At
smaller image scales, the level of geometric modeling becomes lower and
the image context is easier to grasp since the relationships between objects
are less distorted by artifacts. Thus, the extraction of digital terrain models
(DTMs) and objects like buildings, roads, rivers, land-use elements, and so
on, becomes less complicated.

Over the last 15 years, photogrammetric approaches to building extrac-
tion and modeling have evolved. What started out as a pure research issue
has now found firm grounds in professional practice. After the first phase of
efforts to extract buildings fully automatically, the tight specifications of
users have led to the development of efficient manual and semiautomated
procedures. Actually, the need to extend modeling from simple to much
more complex buildings and full ensembles and to even generate complete
city models (including DTM, roads, bridges, parking lots, pedestrian walk-
ways, traffic elements, waterways, vegetation objects, etc.) puts fully auto-
mated methods even further back in the waiting line of technologies for
practical use. In a sense, the user requirements have outpaced the capabil-
ities and performance of automated methods. However, to make it clear,
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automation in object extraction from images is and will continue to be a key
research topic.

There are many fully automated approaches to building extraction, but
only very few that were designed as semiautomated ones from the very
beginning. Very often, procedures are declared as automatic but require
so much postediting that their status as automatic methods becomes ques-
tionable.

In this chapter, we restrict ourselves to purely image-based approaches.
Images inhibit a wealth of information, which is yet unmatched by other
sensor products. Map scanning, laser scanning, radar, and other more rare
techniques are not covered. More specifically, we focus on building extrac-
tion from aerial images, because this has recently found most prominent
attention. A wider spectrum of our work, including city modeling from
satellite images, has been presented in Baltsavias and Gruen [1].

There are a number of useful reviews and paper collections on building
extraction techniques available [2-9].

14.2 Applications of City Models

Currently, the major users in Europe are in city planning (Figure 14.1a),
facility mapping (especially chemical plants and car manufacturers, see
Figure 14.1b), telecommunication, construction of sports facilities, and
other infrastructure buildings. Others include environmental studies and
simulations, location-based services (LBS), risk transports and analysis, car
navigation, simulated training (airplanes, trains, trams, etc.), energy pro-
viders (placement of solar panels), real-estate business, virtual tourism, and
microclimate studies. Interesting markets are expected in the entertainment
and infotainment industries, for example, for video games, movies for TV
and cinema, news broadcasting, sports events, animations for traffic and
crowd behavior, and many more.

Diverse applications require different levels of detail in modeling, a great
variety of different objects to be extracted, and the handling of different data
types and manipulation functions. Therefore, when designing an efficient
method for object extraction and modeling the following requirements
should be observed:

1. Extract not only buildings, but other objects as well

2. Generate truly 3D geometry and, if a GIS platform is used, top-
ology as well

3. Integrate natural image texture (for DTM, roofs, facades, and
special objects)

4. Allow for object attributation
5. Keep level of detail flexible
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FIGURE 14.1

(a) 3D model of ETH Zurich campus Hoenggerberg. Used for the purpose of city planning
(Science City Hoenggerberg). (b) Modeling of a chemical plant (combination of vector and
raster image data). (Courtesy CyberCity AG, Urdorf, Switzerland.)
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6. Allow for a wide spectrum of accuracy levels in centimeter and
decimeter ranges

7. Produce structured data, compatible with major CAD and visual-
ization software

8. Provide for internal quality-control procedures, leading to abso-
lutely reliable results

14.3 Techniques for 3D City Modeling

In this section, we discuss three major techniques, which are used in city
model generation (there also exist combinations):

1. Digitization of maps. This gives only 2D information. The height of
objects has to be approximated or derived with great additional
efforts. It does not provide for detailed modeling of the roof
landscape. This roof landscape is usually very important to the
user, because city models are mostly shown from an aerial per-
spective. In addition, map data are often outdated.

2. Extraction from aerial laser scans. Laser scans produce regular sam-
pling patterns over the terrain. Most objects in city models are best
described by their edges, which are not easily accessible in laser
scans and often cannot be derived unambiguously. Some objects of
interest do not distinguish themselves through height differences
from their neighborhood, and thus cannot be found in laser data.
Finally, the resolution of current laser scan data is not sufficient for
detailed models.

3. Photogrammetric generation. Aerial and terrestrial images are very
appropriate data sources for the generation of city models. They
allow to derive both the geometrical and the texture models from
one unique dataset. The photogrammetric technique is highly
scalable; it can adopt to required changes in resolution and accur-
acy in a flexible way. The processing of new images guarantees an
up-to-date model. Images are a multipurpose data source and can
be used for many other purposes as well.

The introduction of large format digital aerial cameras has further increased
the efficiency for city modeling. Since ultra-high-resolution satellite imagers
with stereo capabilities became available, this also became a viable tool for
3D city modeling, at reduced resolution [10]. However, the geometrical
resolution of optical satellite imagers is further increasing. For example,
Digital Globe has announced for 2007 a new satellite sensor (WorldView I)
at 50 cm footprint.
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Image-based reconstruction of a hybrid city model.

As a result of this brief analysis, the photogrammetric approach must be
considered the most relevant technique, because it can respond best to the
various requirements. A scheme for image-based reconstruction of a hybrid
city model is shown in Figure 14.2. Hybrid refers to the fact that both vector
and raster data can be represented by the model. According to this scheme
roof landscapes, DTM, transportation elements, land-use information, and
so on can be extracted from aerial images.

Combining roofs and DTM will result in building vector models. These
models could be refined by using terrestrial images taken with camcorders
or still video cameras. Aerial images, terrestrial images, and digitized maps
can all contribute to the texture part of the hybrid model. It is also well
known that to a certain extent texture information can compensate for
missing vector data.

Since fully automated extraction methods cannot cope with most of the
aforementioned requirements, semiautomated photogrammetric methods
are currently the only practical solutions of choice. For a review of semi-
automated methods for site recording, see Gruen [7].

There are two semiautomated approaches that have made it into the
commercial domain so far:

1. InJECT, a product of INPHO GmbH, Stuttgart. This approach was
based on the fitting of elementary, volumetric building models or, in
the case of complex buildings, building component models toimage
data. This concept, originally introduced at the Stanford Research
Institute, Menlo Park, United States, was refined and extended at
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the Institute of Photogrammetry, University of Bonn and has been
available as a commercial software package for some time.

2. CyberCity Modeler (CC-Modeler) is amethod and software package
that fits planar surfaces to measured and weakly structured point
clouds, thus generating CAD-compatible objects like buildings,
trees, waterways, roads, and so on. Usually these point clouds are
taken from aerial images, but it is also possible to digitize them from
existing building plans. This product is marketed by CyberCity AG,
Urdorf, Switzerland, a spin-off company of ETH Zurich.

In the following section, we focus on the description of CC-Modeler because
of its dominating position in the professional domain.

14.4 CyberCity Modeler

For the generation of 3D descriptions of objects from aerial images, two
major components are involved: photogrammetric measurements and struc-
turing. In CC-Modeler, object identification and measurement are done in
manual mode by an operator within a stereoscopic model on a stereo
instrument, like a Digital Station. According to our experiences, stereoscopy
is very crucial for object identification. In many complex situations in urban
areas, monoscopic image interpretation will inevitably fail, because the
roof structure cannot be interpreted. Thus, the human operator defines the
level of detail of representation. He measures the key points of the roof
landscape that describe the objects sequentially building by building. In the
case of complex roof structures, a building may have to be broken up into
several CC-Modeler units. The point cloud is then passed over to the actual
“Modeler.”

The structuring of the point clouds is done automatically with the CC-
Modeler software. Structuring involves essentially the intelligent assign-
ment of planar faces to the given cloud of points, or in other words, the
decision making about which points belong to which planar faces. This
problem is formulated as a consistent labeling problem and solved via a
modified technique of probabilistic relaxation. Then, a least-squares adjust-
ment is performed for all faces simultaneously, fitting the individual faces in
an optimal way to the measured points and considering the fact that indi-
vidual points are usually members of more than one face. This adjustment is
amended by observation equations that model orthogonality constraints of
pairs of straight lines. For the purpose of visualization, the system can also
triangulate the faces into a TIN structure. Figure 14.3 shows the data flow
and the procedures involved in the CC-Modeler.

A detailed description can be found at our homepage www.photo-
grammetry.ethz.ch (Research—Projects—CC-Modeler) and in Gruen and
Wang [11]. With this technique, hundreds of objects can be measured in a day.
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FIGURE 14.3
Data flow of CC-Modeler.

Although CC-Modeler generates a polyhedral world, objects with nonpla-
nar surfaces can be modeled in sufficient resolution (compare Figure 14.4).
A DTM, if not given a priori, can also be measured and integrated.

FIGURE 14.4
City model Ziirich Oerlikon. Note the modeling of nonplanar surface objects.



Building Extraction from Aerial Imagery 277

Texture from aerial images is mapped automatically onto the terrain and
the roofs, since the geometrical relationship between object faces and image
patches has been established during the georeferencing and point cloud
generation phases. The facade texture is produced semiautomatically via
projective transformation from terrestrial images usually taken by camcord-
ers or still video cameras.

Although many users are currently mainly interested in the visualization
of the city models, there is also a clear desire to integrate the data into a
GIS platform to use the GIS data administration and analysis functions.
The commercial GIS technology is still primarily 2D-oriented and thus not
really prepared to handle 3D objects efficiently. Therefore, we have devel-
oped in a pilot project a laboratory version of a hybrid 3D spatial infor-
mation system (Figure 14.5), which is described in Wang and Gruen [8].
Figure 14.6 demonstrates a query function of our CC-Spatial Information
System.

The CC-Modeler system and software are fully operational. Over
1,000,000 buildings at very high resolution have been generated already in
cities and towns worldwide (see www.cybercity.tv). Figure 14.7 shows the
integration of vector and image raster data into a joint model (images are
mapped onto the DTM, roofs, and facades).

FIGURE 14.5
User interface of CC-Modeler.
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FIGURE 14.6
A geometrical query of the CC-Spatial Information System.

FIGURE 14.7
3D model of the Congress Center RAI, Amsterdam. Vector data, overlaid with natural
texture.
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14.5 Extensions to CC-Modeler

An important function in high-quality city modeling is the editing of the
raw data. While the CC-Modeler was built to model the objects as close to
their existing size and shape as possible, there arises sometimes the need
to regularize the geometry. Under these constraints do fall the requests to
make straight lines parallel and perpendicular where they are actually not,
or to have all points of a group (e.g., eaves or ridge points) at a unique
height. Another problem grew from the fact that CC-Modeler was designed
to handle individual buildings sequentially and independent of each other.
Building neighborhood conditions were not considered. The geometrical
inconsistencies originating from that fact, like small gaps or overlaps bet-
ween adjacent buildings (in the centimeter/decimeter range), are not dra-
matic and tolerable in many applications, especially those that are purely
related to visualization. However, the topological errors constitute a serious
problem in projects where the 3D model is subject to legal considerations or
some other kind of analysis that requires topologically correct data.

Another significant extension refers to the precise modeling of building
facades. Facades are usually not visible in aerial images, but available in
cadastral maps. We combine this facade information with the roof land-
scape modeled with CC-Modeler to be able to represent the roof overhangs.
We also show that we can model other vertical walls explicitly.

In the following sections, we will give a brief description of these new and
practically important editing procedures. Figure 14.8 shows the flowchart of
the processes mentioned earlier, which are executed after the face definition

V3D
initial » Interface [«——

|

Geometric regularization

Automatic by Semiautomatic
L.S. adjustment | by CAD editing

Neighborhood
topology correction

!

Verticalwall | N V3D
integration corrected Interface [«—>

FIGURE 14.8
Flowchart of CC-Modeler extensions.
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by probabilistic relaxation is done. For a more detailed description of these
extensions, see Gruen and Wang [12].

14.5.1 Geometrical Regularization

Geometrical regularization refers to the task of modifying the geometry in
such a way that regular structures are obtained. Measurements from images
are always erroneous, although the errors may be very small. In addition, in
particular with older buildings, the geometry deviates from regular patterns
sometimes significantly. Edges are not parallel, intersections not perpen-
dicular, roof faces not planar. We therefore have developed two strategies
for regularization: a fully automatic adjustment based on least squares and a
semiautomated approach of CAD editing. Both approaches are integrated in
the software package CC-Edit.
The requirements for geometrical regularization are as follows:

1. Same height for groups of eave points, ridge points, and other
structure points

2. Roof patches containing more than three points should form pla-
nar faces

3. Parallelism of straight edges
4. Right angles of intersecting roof edges
5. Collinearity of edge points

14.5.1.1 Automatic Regularization by Least-Squares Adjustment

We solve these requirements by formulating these geometrical constraints as
stochastic constraints, that is, as weighted observation equations in a least-
squares context. Details may be found in Gruen and Wang [12]. Figure 14.9
shows the result of such a regularization.

14.5.1.2 Regularization by CAD Editing

This is a semiautomated supervised procedure, which operates only in
planimetry. Therefore, it requires that the equal height condition is observed
during the point measurement phase. Then a grid of parallel construction
lines is generated and overlaid to the measured lines. The measured lines
are automatically adjusted to the direction of the grid. The grid’s direction
itself is derived from the average direction of the measured lines concerned.
The selection of the concerned lines can be done automatically or manually.
The overlay display is used for checking and manual editing if something
goes wrong.

The right angle, collinearity, and the planar face constraints are automat-
ically observed by that procedure. Since we use hard constraints here, the
results are strict. An example is shown in Figure 14.10.
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FIGURE 14.9
Correction of roof group by automated geometry regularization.

14.5.2 Topology Adjustment

Inconsistencies in topology between adjacent buildings may arise because of
measurement errors and mutually overlapping roofs.

Figure 14.11 shows a typical topology problem, which may exist even
after the previous geometry regularization. For its solution, we provide both
an automated and a semiautomated procedure.

_____

=== o
Q

FIGURE 14.10
Line rectification (dotted line: before, solid line: after).
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FIGURE 14.11
CC-Edit: CC-Modeler user interface for editing with an example of topological inconsistency
between adjacent buildings.

In the automated mode, the system selects a reference border line, which
is kept fixed and onto which the points of the other lines are projected
perpendicularly. As reference line, the software selects the longest line
(which is supposed to be the most stable). In the semiautomated mode,
this reference line is selected manually.

The functioning of the automated and semiautomated procedures des-
cribed here can be monitored by an operator within an editing window as
shown in Figure 14.11. This has of course a certain similarity with a CAD
interface. It actually contains many typical CAD functions, but also others
that are unique to our system and application-related. An example of
automatic topology correction is shown in Figure 14.12.

14.5.3 Building Facade Integration

The aim is a higher level of detail in building modeling. Since facades are in
general not visible in aerial images we use digital cadastral maps, which
show the outer walls of buildings as part of the legal definition of real-estate
property. By integrating this information into the roof landscape, we are
able to model the roof overhangs. What sounds like a simple problem at first
sight turns out to be a formidable task to automate. In terms of structural
detail, the roof landscape looks very different from the facade landscape.
Sometimes the maps are outdated and the roofs do not match the map
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FIGURE 14.12
CC-Edit: Result of editing with an example of false (left) and automatically corrected topology
(right).

content at all. Maps may also be inaccurate to an extent that the facade
appears shifted and rotated with respect to the roof by a substantial amount.
Facades can show a lot of additional, peripheral details, as for instance stairs
and other add-ons (Figure 14.13).

Figure 14.14 shows a result of automated facade integration. The problem
is not yet solved in general terms and still needs some manual interference
in complex situations. We will report about technical details of our appro-
ach in another publication.

Beyond facade integration, also other vertical wall sections, as they may
appear on parts of a building and not be available from maps, need to be
explicitly modeled as faces. This holds for all vertical building sections that
do not constitute the legal building boundary. We have also developed a
solution for this problem based on the intersection of gutter point projec-
tions onto other building parts like roofs, balconies, and terraces.

FIGURE 14.13
Plan view of roof landscape (dark) and the related facade representation from a map (light).
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FIGURE 14.14
Automated facade integration. Left: Plan view of roofs and facades from map; right: integration
result.

14.6 Attribute Information and Connection to GIS

Wang and Gruen [8] proposed a solution for a 3D spatial information
system. It was developed as a prototype system for scientific investigations.
Within CC-Modeler (CC-Edit), attributes can be defined for geoencoding or
for adding attribute information for material, and so on. Figure 14.15 shows
this functionality.

FIGURE 14.15
3D Spatial information system. Attributes can be entered within CC-Edit.
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Additionally, CC-Modeler allows to compute attributes like volumes
and areas for planning purposes. Even the volume of basements may be
included optionally.

14.7 Texture Mapping and Visualization/Simulation

In most applications, images are used as realistic texture data. Photorealistic
texturing applied to 3D objects gives the most natural representation of the
real world. Texture presents details that are not modeled in the vector dataset
and gives information about material properties. Therefore, for visualization
purposes, images may even compensate for lack of modeling of fine details.

Generally, there are two types of data sources: aerial images and terres-
trial images taken from street level. The former are usually used for map-
ping on terrain surfaces and roofs of buildings whereas the latter are for
building facades and other vertical faces. From a data structure point of
view, both kinds of images are expressed as 2D raster data, which can be
stored or manipulated as a special layer in our 3D system. Visualization of
3D city models becomes a key issue when dealing with user requests. The
best model is not worth too much if the user cannot look at it at reasonable
speed. Here we must clearly distinguish between real-time and snail-time
visualization requirements. Snail-time performance is acceptable, if images
are produced for publications and the like. However, in most applications
real-time capabilities are requested. This puts us into the somehow uncom-
fortable situation, that, although there are visualization programs available
on the international market to the hundreds (compare www.tec.army.
mil/TD/tvd/survey/survey_tochtml), only very few have real-time per-
formance even with very large datasets. To make it clear, a large dataset
in our applications starts with about 10,000 buildings of very fine detail and
tenths of MB DTM vector data plus over GB of real-image texture. Synthetic
image texture, although faster to handle, is of vanishing interest. We have
seen datasets with more than 300,000 fine-detailed buildings.

For high-end performance level-of-detail (LoD) capabilities for both vec-
tor and image data are indispensable. LoD provides for on-the-fly switching
between several resolution levels (three are mostly sufficient), depending on
the viewing distance. With this functionality and sufficient host and graph-
ics memory and an appropriate, but still standard graphics board, even
laptops can handle very large datasets in real time.

In our group, we are using packages like Cosmo Player (for very small
datasets), AutoCAD, Microstation, Inventor/Explorer (SGI), ERDAS Vir-
tualGIS, Maya (Alias Wavefront), Terrainview (viewtec), Skyline (idc), and
a variety of self-developed software.

Modern visualization software not only shows the ““naked” model, but
also allows for features like import of various standard data formats, prep-
aration of interactive or batch-mode flyovers and walkthroughs, generation
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of videos, integration of text information, definition of various layer systems
above terrain, search functions for objects, coupling of information in dif-
ferent windows, import of synthetic textures, integration and manipulation
of active objects (e.g., clouds, fog, multiple light sources, cars, people, etc.),
hyperlink functions for the integration of object properties, export via Inter-
net/Intranet/CD/DVD, and so on.

New tools like Google Earth, Microsoft Virtual Earth, and NASA Wind
have become available recently, making 3D landscape and city models of
virtually the whole earth instantly accessible worldwide. Although high-
quality 3D city models do not exist, yet on these platforms it is only a matter
of time until they become available.

14.8 Generation of 3D City Models from Linear Array CCD
Aerial Cameras

Linear array CCD-scanners are nowadays a prime technology for space and
large format aerial image sensing. This new technology requires the devel-
opment of novel sensor and trajectory models for precision processing. We
have developed lately a suite of new algorithms and the related software for
the processing of this kind of data (for details, see Refs. [13,14]). Here, we
specifically address the issue of 3D city modeling. We combine the semi-
automated object extraction method of CC-Modeler with the new sensor
models of CCD-linear array cameras. In our examples, we use images from
Three-Line-Scanner (TLS) and SI-200 (Starimager-200), both from STAR-
LABO Corporation, Tokyo. This approach can also be applied to other sen-
sors of similar type. We have interfaced TLS, SI-200 and IKONOS, QuickBird
data with CC-Modeler functionality and have produced several datasets over
Yokohama and Ginza, Tokyo, Japan, Izmir, Turkey, Phoenix, United States,
and others. We report briefly about the current status of TLS and SI-200
functionality and we describe the related generation of city models. We
show high-resolution phototextured models of Yokohama, including build-
ings and objects like street lamps, roads, waterways, parking lots, bridges
and trees, and Ginza.

For our work with high-resolution satellite images, see Kocaman et al.
[10]. The combination of two modern technologies from sensing and pro-
cessing opens interesting perspectives for future applications in 3D virtual
environment generation.

The TLS system is an aerial multispectral digital sensor system, devel-
oped by STARLABO Corporation, Tokyo. It uses the TLS principle to
capture digital image triplets in along-strip mode. It can be used either in
three-image panchromatic mode or in one-image multispectral (RGB) mode.
The imaging system contains three times three parallel one-dimensional
CCD focal plane arrays, with 10,200 pixels of 7 um each. The TLS system
produces seamless high-resolution images with usually 5-10 cm footprint
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TABLE 14.1
TLS and SI200 Sensor Parameter

TLS S1-200
Focal length 60.0 mm 65.0 mm
Number of pixels per array 10,200 14,404
Pixel size 7 pm 5 pm
Stereo CCD arrays 3 3
Multispectral CCD lines 3 RGB 3 RGB + 1 infrared
Stereo view angle 21° 21°/30%
Field of view 61.5° 68.0°
Scan line frequency 500 Hz 500 Hz

@ Forward—nadir/nadir-backward stereo view angle.

on the ground with three viewing directions (forward, nadir, and back-
ward). There are two configurations for image acquisition. The first config-
uration ensures the stereo imaging capability, in which the three CCD
arrays working in the green channels are read out with stereo angles of
about 21°. The second configuration uses the RGB CCD arrays in nadir
direction to deliver color imagery. STARLABO has also developed another
camera system, called SI-200 (STARIMAGER-200). This comes with an
improved lens system and with 10 CCD arrays on the focal plane (3 X3
work in RGB mode, one CCD array works in infrared mode). Each CCD
array consists of 14,404 pixels at 5 pm size. All 11 channels can be read out
simultaneously, producing threefold overlapping color imagery plus one IR
channel. For the detailed sensor and imaging parameters, see Table 14.1.
In order to get highly precise attitude and positional data over long flight
lines, a combination of a high local accuracy INS with the high global
accuracy GPS is exploited. An advanced stabilizer is used to keep the
camera pointing vertically to the ground to get high-quality raw-level
images and outputs attitude data at 500 Hz. A Trimble MS750 serves as
Rover GPS and collects L1/L2 kinematic data at 5 Hz and another Trimble
MS750 serves as Base GPS on the ground. The rover GPS is installed on top
of the aircraft and the INS and the TLS camera are firmly attached together.

14.8.1 Application Software Development

The application software has been developed by our group at the Institute of
Geodesy and Photogrammetry, ETH Zurich. The processing modules include:

o User interface and measurement system: The user interface allows the
display, manipulation, and measurement of images. It includes the
mono and stereo measurement modules in manual and semiauto-
mated mode. It employs large-size image roaming techniques to
display the TLS forward, nadir, and backward (plus other chan-
nels if possible) view direction images simultaneously.
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e Triangulation: For high-accuracy applications we recommend a
previous triangulation. The related software is a modified bundle
adjustment called TLS-LAB. We have developed a special TLS
camera model and offer three different trajectory models (DGR,
Direct Georeferencing Model; PPM, Piecewise Polynomial Model;
and LIM, Lagrange Interpolation Model). For more details and
results of several accuracy tests, see Gruen and Zhang [13-14].
The self-calibration technique for systematic error modeling has
also been implemented.

e Image rectification: Rectification comes in two modes. The coarse
version just uses the orientation elements as given (or derived
from triangulation) and projects the raw images onto a predefined
horizontal object plane. The refined version uses an existing DTM
(of whatever quality) in replacement of the object plane. This latter
method reduces the remaining y-parallaxes substantially.

e DSM/DTM generation: We have devised and implemented a new
matching strategy for the automatic generation of Digital Surface
Models. This strategy consists of a number of matching compon-
ents (cross correlation, least-squares matching, multi-image match-
ing, geometrical constraints, edge matching, relational matching,
multipatch matching with continuity constraints, etc.), which are
combined in particular ways to respond to divers image contents
(e.g., feature points, edges, textureless areas, etc.). The matching
module can extract large numbers of mass points by using multi-
images. Even in nontexture image areas, reasonable matching
results can be achieved by enforcing local smoothness constraints.
For more details on matching, see Gruen and Zhang [13].

 Orthoimage generation: This is a special solution for fast derivation
of orthoimages given the TLS/SI-200 geometry and images.

e Feature and object extraction: Building extraction is based on CC-
Modeler. Another new technique, which operates at a higher level
of automation, is under development. In addition, for road extrac-
tion we have different semiautomatic and fully automatic appro-
aches at our disposal, which however still have to be adjusted to
the particular sensor geometry of linear array images.

14.8.2 3D City Modeling with TLS/SI-200 Images and CyberCity Modeler

There are several advantages in using TLS/SI-200 imagery to derive a 3D city
model. Firstly, very high-resolution seamless image data (3-10 cm ground
resolution) can be obtained by installing the system on a helicopter. Several
multispectral channels (RGB, infrared) are available simultaneously. Sec-
ondly, unlike with the traditional frame-based photography, the three-line
geometry is characterized by nearly parallel projection in flight direction and
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perspective projection perpendicular to it (so-called line-perspective projec-
tion). This results in the following advantages compared with single-frame
camera data:

1. More pixels per frame (larger area coverage)
2. Triple or more overlap (more redundancy)

3. Orthogonal in flight direction (minimal occlusions, true orthoi-
mages are of better quality)

4. PAN and MS simultaneously acquired at same resolution
5. Building facades are better visible (impact on geometry and texture)

In the TLS/SI-200 system, a stabilizer is used to absorb the high-frequency
positional and attitude variations of the camera during the flight to get high-
quality raw-level images. Furthermore, the stabilizer always keeps the
camera pointing nearly vertically to the ground. This results in minimal
occlusions in the nadir view images. In addition, the image information of
the building’s facades are recorded in shortened form in the forward and
backward view images (Figure 14.16).

With the TLS/SI-200 stereoscopic measurement software the buildings,
roads, and other kinds of man-made objects can be measured manually or
semiautomatically. The measurement procedure must follow the regulation
of CC-Modeler, such that it can process TLS/SI-200 data directly.

Since the input data of CC-Modeler are just point clouds, it does not
matter which sensor model is used to construct the 3D vector model.

Building

Terrain

FIGURE 14.16
TLS principle: forward, nadir, and backward view images.
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However, the sensor model must be identified if the full 3D model with
texture mapping is required. In this case, the necessary modification of CC-
Modeler is to extend the sensor model from the normal frame perspective
projection to the line-perspective projection of the TLS/SI-200 system. The
software ““CC-TLSAutotext” does the texture mapping with TLS/SI-200
images as the original data source. In “CC-TLSAutotext,” the procedure of
texture mapping is to project the object faces from 3D space onto the TLS
images (forward, nadir, and backward view) and take the image patch that
has the best resolution. The best resolution is equivalent to the largest
related image patch size. However, considering the possible occlusions
between 3D objects, the best texture may not be contained in the patch
with the best resolution. It could be the one with the highest amount of
completeness or could be an image mosaic with texture patches that are
from different TLS images. Therefore, an occlusion-checking procedure has
to be involved. In case of occlusions, the user has three options: (1) paste
partial patches from different images together, (2) use terrestrial images
captured on the ground, and (3) randomly take artificial textures. In case
of full occlusions, the procedure uses the artificial texture or manual
texturing. Good natural texture mapping is one of the most demanding
tasks in city modeling. There is much room for improvement and increase
in efficiency.

14.8.3 Examples

We report here about two test projects, using TLS and SI-200 linear array
sensor imagery, with the purpose of demonstrating the feasibility of our
procedures:

1. Yokohama city, two selected subareas; TLS imagery
2. Ginza, Tokyo; SI-200 imagery

14.8.3.1 Yokohama City

The first project includes a small area in downtown Yokohama, Japan
(Area 1 in Figure 14.17). All the buildings, the detailed infrastructures,
main roads, and some trees were measured and a 3D model was con-
structed. Figure 14.18 shows the 3D hybrid model, rendered with Cosmo
Player.

The second project represents a larger area of about 1.5 km?, with a
boulevard in front of the Shin-Yokohama Station (Area 2 in Figure 14.17).
The whole model includes 2482 houses, 26 bridges, 20 road segments, 1
river, 129 trees, 8 electric power lines, and 170 street lights. Figure 14.17
shows three overlapping TLS image strips with 6.5 cm ground resolution.
For texture-mapping purposes, about 100 terrestrial still video photos of
some high buildings were used.
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FIGURE 14.17
Experimental area of Yokohama (Upper left: area overview; upper right: zoom-in; lower part: three
TLS strips).

After the triangulation procedure with several ground control points, a
DTM was automatically generated with the TLS image matching module
and some editing efforts, and a 0.25 m resolution orthoimage was generated
with the TLS image rectification module.

(@) (b)

FIGURE 14.18
(a) Yokohama, area 2. View onto the reconstructed 3D model. Power lines are also modeled.
(b) Yokohama, area 2. Detailed roof structures of the 3D model.
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FIGURE 14.19
Textured 3D model of a small area in downtown Yokohama.

We use the stereoscopic measurement module as the measurement plat-
form to measure the point clouds, following the regulation of CC-Modeler.
The integration of CC-Modeler and the stereo measurements is crucial for
the 3D model generation. After measuring all the objects, CC-Modeler is
employed to construct the 3D model. Figure 14.18a and b show views on the
reconstruction results. The level of detail in reconstruction can be checked
by the roof structures of Figure 14.18b.

Finally, the texture-mapping procedure for all measured objects is carried
out with CC-Modeler’s extended module “CC-TLSAutotext.” In this pro-
cedure, the orthoimage mosaic is mapped onto the DTM, and the high-
resolution image patches are mapped onto the 3D objects such as houses,
bridges, and roads. Figures 14.19 and 14.20 show the hybrid 3D-textured
models. In Figure 14.20, a background static image with sky and clouds is
also rendered to achieve a more realistic effect.

14.8.3.2 Ginza, Tokyo

This project uses SI-200 image data and aims at creating a 3D model with
texture mapping along the main street of downtown Ginza, Tokyo. The area
of the Ginza project is 2.0 km” with about 600 houses and 15 road segments.
The 3D vector model was extracted from aerial laser scan data. The texture
mapping for roofs and walls is done automatically by “CC-TLSAutotext,”
using only aerial image data. This explains the somehow blurred impression
of facade texture. Figure 14.21 shows a view onto the 3D model.
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FIGURE 14.20
An overview of the whole textured 3D model of the Yokohama project.

14.9 Conclusions

The efficient generation of 3D city models is an important task, both from a
scientific and practical point of view. City models are already used in many

FIGURE 14.21
Textured 3D model of Ginza, Tokyo.
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applications and we see a steady growth of users. City modeling is maturing
from a niche application into a formidable market. The growth potential
is immense. Synchronous with the broadening of the application base
goes the need for higher resolution, both in terms of geometrical and
textural detail.

Aerial photogrammetry plays an important role as a flexible and eco-
nomic technique for data generation. Semiautomated photogrammetric
techniques are available for efficient data production. Satellite images how-
ever, even in high-resolution mode, do not yet show enough detail for
detailed and reliable modeling.

Terrestrial images, on the other hand, are already now relevant for facade
texture generation, and in the future possibly also for facade geometry mod-
eling and the recording of other objects that are not accessible from the air.

To what extent aerial laser scan data can be integrated into the city-
modeling process has to be determined. Terrestrial laser scanners already
play a significant role in the modeling of indoor scenes and also in high-
resolution modeling of landmarks, for example, for 3D car navigation. Here,
terrestrial laser scanning is combined with terrestrial images.

In the future, we will see more and more combined approaches, where
images and laser scans are used, both from the air and in the terrestrial mode.

Much of the current discussion is centered around the generation of
virgin databases. It would be appropriate however to discuss new methods
for data maintenance. The fast pace with which our man-made environment
is changing will also require innovative techniques for the updating of 3D
city models.
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15.1 Introduction and Motivations

Monitoring of the urban environment is a key issue within the framework of
modern and efficient management of Earth resources. Urban areas represent
a very critical part of our planet due to the extremely high density of
population and the continuous change of its environment. Spaceborne
remote sensing instruments provide frequently updated and relatively
inexpensive data to monitor and possibly plan urban area development
and optimal resources distribution [1,2]. In particular, synthetic aperture
radar (SAR) images provide all-day, all-weather, synoptic views whose
potentiality has been only partly explored. Accordingly, electromagnetic
models, aimed to quantitatively explore the information content in SAR
images of urban areas, are required [3-5] to provide a sound analytical
background to devise interpretation tools able to recover value-added
information from the available SAR images [6-9].

On qualitative basis, SAR images of urban areas are characterized by a
very typical texture: roads and other not built-up areas are often clearly
recognized because they appear as relatively dark features; conversely,
buildings generate complicated features on the images with alternate
extremely bright and dark areas. Models to understand the information
content in building-free areas are available, as they are essentially coinci-
dent with those pertinent to natural areas. These areas are modeled as rough
surfaces, where the classical SAR image formation mechanism takes place:
then, each element of the SAR image exhibits a well-known dependence on
a few surface geometric and electromagnetic parameters. Conversely,
models to represent the built-up areas must deal with multiple-scattering
phenomena as well as severe geometric distortion including shadowing and
layover: in this case, each element of the SAR image exhibits a very compli-
cated dependence on several surface geometric (building’s dimensions and
orientation, surrounding terrain classical or fractal roughness parameters)
and electromagnetic (dielectric constants) parameters, and its geocoding
turns out to be almost impossible.

For a quantitative, systematic, meaningful, and efficient approach, it is
therefore convenient to consider a canonical urban scene composed of
canonical elements. A list of these elements would include: flat (at the
electromagnetic wavelength scale) surfaces, representing man-made pave-
ments as well as buildings’ flat walls and roofs; rough surfaces, representing
terrains, as well as buildings’ nonflat walls and roofs; dihedrals, each one
representing an isolated building surrounded by a flat background; trihe-
drals, each one representing not isolated buildings whose walls are not
aligned, as well as building balconies; canyons, representing not isolated
buildings aligned along two sides of a street. Modeling all these elements
would provide a complete handbook for quantitative analysis of SAR data
relevant to urban areas. In this chapter, rationale and results for a sound
electromagnetic SAR modeling of the dihedral canonical elements are
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detailed. The dihedral hereafter examined represents a single dielectric
building surrounded by a dielectric background: the radar return from
this canonical element is evaluated in closed form in terms of the scene
geometric and radiometric parameters as well as the radar characteristics
and the acquisition geometry.

A detailed derivation of results, even on this relatively simplified geo-
metry item, is out of the scope of this chapter. We prefer to include all the
relevant results, arranged in the form of a handbook, along with some
useful comments to use it to clarify the applicability of the presented
material. The quantitative discussion is referred to some meaningful
cases presented in a section along with numerical results. Details to obtain
these final results and their intermediate achievements can be found in the
quoted literature.

To close this section, it is convenient to list the main characteristics of the
electromagnetic models presented in this chapter.

The models discussed in this chapter are appropriate for airborne and the
upcoming generation of high-resolution spaceborne SAR sensors: moreover,
they make use of a description of the urban scene based on raster (topo-
graphy and dielectric constants of the area) as well as vectorial (geometry
and dielectric constants of the buildings) data; finally, they include relevant
radar and mission parameters.

The presented direct scattering and radar models rely on a sound physical
and mathematical basis, thus providing an innovative track and quantita-
tive means to devise inverse algorithms for information retrieval from urban
areas SAR data, as well as to identify the optimum SAR sensor configuration
and operational mode (look angle, radar polarization, altitude, etc.), which
maximizes the information content in the corresponding SAR images. With
respect to any numerical approach, the presented radar and scattering
models are easily amenable to efficient implementations in appropriate
computer codes.

15.2 SAR Image Model

In this section, radar models are presented to highlight the dependence of
the SAR image on the radar parameters.

The reference coordinate system makes use of x and r, the azimuth and
slant range coordinates referring to the sensor trajectory (see Figure 15.1).
This azimuth—-slant-range coordinate system is the one that best matches the
SAR sensor functional mode but does not easily cope with any geocoded
representation of the SAR images. This representation would benefit by an
azimuth-ground-range representation instead. As a matter of fact, SAR
images are intrinsically affected by typical distortions: foreshortening, lay-
over, and shadowing take place and, especially for images of urban areas,
deeply affect the SAR data.
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FIGURE 15.1
The azimuth-slant-range coordinate system. r

By assuming a perfect focusing of the SAR raw data, the SAR complex
image turns out to be expressed as [10]

i(x',r) = ” y(x,r) exp (—ji—wr> sinc [% (' — x)} sinc [% (- r)} dxdr,
(15.1)

where

e ¥ and 7' are the independent coordinates employed for the SAR
image

e ¥(x,r) is the scene reflectivity function, whose values are propor-
tional to the coherent sum of all the fields backscattered by points
located at azimuth x, and whose complete propagation path (sen-
sor trajectory—scene-sensor trajectory, also including any multiple
reflection on scene elements) is equal to 2r

e X and f are the carrier wavelength and frequency, respectively, of
the transmitted signal

e sinc (#) =[sin (#)]/t
L Af . . .
e Ax = 5 and Ar = 2 Af are defined as the azimuth and range spatial
resolutions, respectively, where L is the azimuth dimension of the
sensor antenna and Af is the bandwidth of the transmitted chirp

» Twofold integration is extended over the illuminated area

Determination of the image representation (Equation 15.1) assumes that
the SAR raw data are continuously acquired as function of x'=ovt' and
' =c(t' - t,)/2, where t' is the acquisition time variable, ¢, is the time of
transmission of the nth pulse, and c is the speed of light in the vacuum. This
is not the case due to the pulsed operation of the SAR system. However, the
representation (Equation 15.1) simplifies the notations and helps the inter-
pretation of the results and is formally justified on the basis of the sampling
theorem [10]. Accordingly, the quoted representation is the best choice for
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any theoretical analysis. However, it should be stressed that along all the
processing chain, both the raw signal and the SAR image are appropriately
sampled and quantized to get numerical representations amenable to com-
puter processing and displaying via software codes and graphical tools. The
quantized SAR image, normally coded on a gray-level scale, is usually
obtained by considering the (square) modulus of the numerical version of
the complex image (Equation 15.1). The SAR image is represented by super-
position of sampled sinc(-) functions, each one centered over a resolution
cell and holding an amplitude proportional to the radar cross section (RCS)
of the cell as sensed by the SAR instrument.

15.3 Models for the Single Building Canonical Element
in the SAR Image

According to Equation 15.1, the evaluation of the SAR image, including the
previously mentioned canonical dihedral elements representing the build-
ings, can be performed as detailed hereafter.

First, the scene reflectivity map is evaluated as a function of the geometric
and electromagnetic parameters of the elements constituting the scene; this
step is accomplished by taking into account the SAR orbit and radar param-
eters. Then, the proper superposition of all the contribution from the elem-
ents of the scene is computed; this step is accomplished by taking into
account the SAR resolutions.

The first step requires as input data the descriptions of sensor, orbit,
terrain, and building data. Buildings are modeled as dielectric prisms
lying on a rough surface, the latter being in principle of infinite extent.
Accordingly, the scene geometric description is provided by the coordinates
of vertices of the buildings” projection over the horizontal plane, the build-
ings’ heights, and the coordinates of the terrain surrounding them; the
electromagnetic description is provided by the permittivity and conducti-
vity of the buildings” walls and the terrain surrounding them. The scene
geometrical profile is represented by rectangular facets that are smaller than
the SAR resolution, but much larger than wavelength; the reflectivity map
of the scene, y(x,r), is obtained by appropriately summing up the radar
returns from the illuminated facets within the scene. The facets can belong
to the terrain surrounding the buildings, to the buildings’ roof, or to the
buildings” walls. A ray-tracing procedure is used to identify shadowed
facets [11,12].

When a plane electromagnetic wave impinges on such a canonical struc-
ture, single-scattered contributions, shortly single returns, come back to the
sensor, related to the backscattering properties of the ground, the buildings’
walls and roof (see Figure 15.2a). It must be taken into account that facets
belonging to the buildings” vertical walls usually appear almost smooth at



302 Remote Sensing of Impervious Surfaces

/

(©

FIGURE 15.2
Ray path relevant to scattering contributions: (a) single; (b) double; (c) triple.

the radar frequencies ignoring any balcony that can be viewed as very small
dihedral elements. Then, multiple reflections between each illuminated wall
of any building and the terrain surrounding it can provide significant
contributions to the electromagnetic field backscattered toward the SAR
instruments. Part of the electromagnetic wave is double-scattered from the
ground to the wall (and vice versa), and then sent back to the sensor,
forming the double returns to the scattered field (see Figure 15.2b). Further
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contributions are by triple-scattering phenomena, the triple returns from
walls and ground (see Figure 15.2c).

Closed-form solutions for the single-, double-, and triple-scattered com-
ponents can be obtained in the phasor domain, that is, assuming time
harmonic signals; for SAR employing pulsed radar [13], these closed-form
solutions can be applied in an appropriate mixed slant range-phasor
domain, which addresses the temporal issues related to the ray path of
each electromagnetic wave contribution by distributing any radar return
in the appropriate slant range cell [4].

A general consideration of the electromagnetic model’s limits of validity
is in order. Closed-form scattering solutions can only be obtained by
employing appropriate approximations that are valid only under appro-
priate roughness regimes for the nonflat facets. In almost any practical
application, SAR models relevant to urban areas can be safely dealt with
using physical optics (PO) and geometrical optics (GO) scattering models.

The single returns are obtained by considering the electromagnetic field
backscattered by each illuminated facet: they are evaluated as in Ref. [11] as
a function of the mean facet slope, roughness, and electromagnetic para-
meters and by taking into account transmitting and receiving polarizations
and the incidence angle. Depending on the facet surface roughness, geo-
metrical optics or physical optics are employed [14]. Single returns are
related to ray paths of different lengths and must be summed up in the
appropriate slant-range cell.

The double returns are considered by referring to a ray that runs the path
S-A-B-S, S indicating the radar position (see Figure 15.3); its optical path
length is equal to S-O-S relevant to the ray that is backscattered at point O.
This result is independent of the location of points A and B, the incidence
angle and the building height. Hence, the returns corresponding to all the
double-scattered rays hold the same time delay, equal to that of the single-
scattering return from point O. Then, double-scattering contribution is
added to the reflectivity map y(xr), after being concentrated at a slant-
range distance ro.

FIGURE 15.3
Optical ray path relevant to single, double, and triple returns.
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The triple returns are considered by refering to a ray that runs the path
S-B-A-B-S (see Figure 15.3); its optical path length is equal to S-C-S of one of
the rays that would be backscattered by the point which is the specular
counterpart of A with respect to the building’s wall. Hence, the delays of the
triple-scattered components are distributed over the interval spanning the
delay corresponding to single scattering from O to the delay corresponding
to single scattering from D = (x,rp). Then, triple-scattering contribution is
added to the reflectivity map y(x,r), after being evenly distributed over the
range interval from 7o to rp.

Superposition of first-, second-, and third-order returns fully represent
the scattered field; higher-order mutual interactions do not provide any
contribution to the backscattered field to the radar antenna because the
wall surface is supposed to be flat.

In the case of random surfaces, the evaluation of the single-, double-, and
triple-scattered contributions is obtained by generating a circular Gaussian
complex random variable with mean and variance computed as presented
in Sections 15.5 through 15.7.

A ground-range to slant-range projection is applied to model the fore-
shortening and layover effects; moreover, a power-sharing approach [11] is
employed to get a discretized version of the radar signals. Iterating this
procedure for all the facets composing the scene allows the evaluation of the
scene reflectivity map y(x,r).

15.4 Electromagnetic Methods to Evaluate
the Backscattered Field

Electromagnetic models are required to evaluate in closed-form single and
multiple returns for each element within the scene. Numerical techniques
could be adopted: however, numerical methods are difficult to be used
whenever random surfaces are in order; moreover, they do not show the
functional dependence of the scattered electromagnetic field on the scene
parameters, are not efficient, and are time-consuming. Conversely, analy-
tical methods easily deal with random surfaces; explicitly account for any
significant scene parameter in the analytically evaluated scattered field; and
allow fast evaluation of the scattered field whenever closed-form solutions
are available.

15.4.1 Scattering Methods

The proposed model is relevant to a building that is isolated (from the
electromagnetic point of view) from any other man-made structure. The
building model consists of a prism with smooth walls, lying over the ground
(in principle of unlimited extent), modeled as a random rough surface;
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building and ground surfaces are supposed to be made of dielectric materials.
Each building wall forms a dihedral with the surrounding ground. The wall,
which constitutes one face of the dihedral, forms a generic angle, ¢, with
respect to the sensor line of flight; the extension of the ground area inter-
acting (according to the GO or PO rationale) with the building wall consti-
tuting the other element of the dihedral is not prescribed: the proposed
method evaluates this area in terms of the radar geometry and ray-tracing
procedures. The radar return from such a structure can be decomposed into
single and multiple returns.

Single returns from the rough ground, the building roof, and vertical
walls can be evaluated in closed form by employing physical optics or
geometrical optics scattering methods, depending on surface roughness.
PO approximation is used for surface slope variance much smaller than
unity, whereas GO approximation is used for surface standard deviations
much greater than the electromagnetic wavelength.

Multiple returns from the dihedral structures formed by vertical walls
and ground must be included. As the wall roughness is often marginal at
the wavelength typical of any SAR instruments, the multiple scattering
between buildings and terrain can make use of the GO to evaluate the
field reflected by the smooth wall toward the ground (first bounce) or the
sensor (second or third bounce), and GO or PO (according to ground surface
roughness) to evaluate the field scattered by the ground toward the wall
(first or second bounce) or to the sensor (second bounce).

Note that GO and PO solutions are valid under the Kirchhoff approxi-
mation (KA), which assumes surfaces of infinite extent to evaluate the
surface fields. To this extent, scattering contribution due to the currents
actually flowing on surfaces of finite extent can be accounted for by
including appropriate diffraction contributions from the building’s hori-
zontal and vertical edges (reference is made to the uniform theory of
diffraction [UTD]) as well as the building’s vertexes. The building’s dimen-
sions are very large in terms of wavelength at microwave frequency; then,
building edge diffractions are expected to be small [15,16] with respect to
reflection contributions, and errors caused by neglecting the diffractions
are definitively lower than those caused by the assumed simple shape of
the building. In addition, inclusion of these contributions would not allow
obtaining analytical solutions to the scattering phenomena, and defini-
tively less manageable and noninformative numerical solutions should
be used.

The geometry of the wall-ground structure is presented in Figure 15.2b, in
which wall height and length are / and J, respectively; the center of wall base
onto the ground plane is (xo, Yo); ¢ is the angle between x axis and wall base.

The structure can be modeled as an appropriate dihedral holding three
relevant properties, which do not allow employing the classical theory of
scattering from corner reflectors. First of all, the ground face area is in
principle not limited because the portion of ground involved in electroma-
gnetic double reflection depends on the radar off-nadir angle: it can vary
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from zero (radar illumination close to nadir) to infinite (radar illumination
at near-grazing angles). Second, the material of the observed structure is not
a perfect conductor. Third, the ground is a random rough surface, whose
roughness may generate a nonnegligible double-scattering return for non-
null values of ¢. In the following the terrain profile is modeled by means of a
Gaussian random process, z(x,y), with the Gaussian correlation function
whose variance and correlation length are ¢* and I, respectively.

In the following text, we report only those formulae that are needed to
present, in the remaining part of the chapter, the result for the scattered field
relevant to single, double, and triple return contributions. Motivations to
use GO and PO are added along with the rationale to use them. A discussion
to distinguish between GO solutions as they apply to deterministic and
random surfaces is also added to correctly apply GO to the smooth wall
as well as to the stochastic ground.

15.4.2 Kirchhoff Approximation

A plane wave incident field, E;, is considered with amplitude E;, polariza-
tion fixed by the unit vector €;, and direction of propagation (in the plane
x=0), individuated by the wavector k;:

Ei = Egé; exp (—jk; - ¥). (15.2)

The electromagnetic field E; scattered by a generic (possibly rough) surface
S’, which separates two media with different complex dielectric constants,
is [14]

Es(r) = JJ {~jopG(ryY) - A x H(r)]+ V x G(r,Y) - [a x E(Y)]}dS, (15.3)
&

where
n is the unit vector normal to the surface pointing toward the source
region;
G(r,r') is the dyadic Green’s function for the homogeneous space.

If the observation point is in the far-field region, then the dyadic Green’s
function simplifies and in the observation direction individuated by the unit
vector k; the scattered field is

E.(r) = —WEO (I - kk) ” {125 « [f x E()] + nf x H(r')]}
3

x exp (—jks-1)dS/, (15.4)

where
7 is the intrinsic impedance in the source region
ks = kk; is the wavector of the scattered field.
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In order to evaluate the surface fields, KA refers to the tangent plane.
Accordingly, the scattered field is expressed as [14]

E.(r) = —ﬂ‘exf%kr)lsoa —keky)- ” F(k;, &, 1) exp[j(k; — ke)-r1dS, (15.5)
S/
where
F(k;, &, n) = —(&-q;)(0-ki)§,(1 — Ry) + (&-p;)(d x q;)(1 + Ry)
+ (& q)lks x (A x q)](1 +R1) + (& p)d- k) (ks x ¢)(1 - Ry)

(15.6)
and
lA(i X N
4 = — 15.7
% |k1 X fll ( )
P = q x ki. (15.8)

In Equation 15.6, R and R, are (local) Fresnel reflection coefficients for
locally parallel and perpendicular polarizations, respectively.

15.4.3 PO Solution

KA does not allow, in general, evaluation of the scattered field in closed
form for nonplane surfaces due to the involved dependence of F on the
surface profile, described by the local normal fi. In the PO approximation,
the surface is modeled as a microscopic roughness superimposed on a mean
plane with normal unit vector fip; in the small slope roughness hypothesis,
F is expanded around fy. The first term of the expansion provides the zero-
order PO solution for the scattered field:

Ey(r) = —FPER) b gk k) Bk, &, o), (15.9)
41y
where
I — ” exp [j(ki — ks)-r1dS’. (15.10)
S/

In Equation 15.10, ¥’ accounts for the surface microscopic random roughness
so that I, is a random variable.

By referring to horizontal and vertical polarizations, Equation 15.9 can be
rewritten as

Ew| . exp(jkr) (Sph  Syn \|Ein
{Esv] =k 4y Shv  Sw Eiv L (1511
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where the entries of the scattering matrix S are given by

Spq = [(I — ksk) - F(ki, &p, 110)] - &g (15.12)

15.4.4 GO Solution

GO applies to scattering from both deterministic and random surfaces:
however, in these two cases the GO formulation is obtained by following
different rationales.

In the deterministic case, GO solution is the first term of the asymptotic
solution to the Maxwell equations in the high-frequency regime k — co. GO
leads to electromagnetic propagation along ray paths. In a homogeneous
medium, rays are straight lines and, when they hit a deterministic boundary
surface, they are reflected in the specular direction [17]. Electromagnetic
fields are locally plane waves: the evaluation of field polarization and
amplitude is predicted by means of the transport equation [17].

GO evaluation of the scattered fields for rough surfaces can be obtained
by asymptotically evaluating the integral in Equation 15.5. In this case, the
main contributions to the scattered field arise from stationary phase points
whose normal unit vector is fi; implicitly defined as

ks = ki — 2(k; - fig)fs, (15.13)

where the incident and the scattered direction of propagation satisfy the
specular reflection condition. The GO solution is then written as [14]

B jk exp (—jkr) E

- o(I — ksks) - F(ki, &;, i) ;. (15.14)
1

Es(r) =
The scattering matrix entries are in this case equal to
Spq = [(I — kks) - Fk;, &p, 05)] - &g, (15.15)

Equations 15.14 and 15.15 are formally coincident with Equations 15.9
and 15.12, but for use of ng instead of fy. The surface integral I is
formally provided by Equation 15.10 and for random surfaces is a random
variable: analytic evaluations in closed form of its mean and variance are
of interest.

15.5 Single Return Contributions

The entries of the scattering matrix S, as well as mean and variance of the
integral Is, are hereafter evaluated in closed form for the different single
return contributions.
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Single returns to the radar are relevant to the terrain, the building’s wall,
or the roof. In the next section, we evaluate the single returns in closed form
(see Figure 15.2a) by using both GO and PO.

15.5.1 Single Return from the Building’s Walls

(a) GO solution:
For a plane deterministic surface, GO expresses the scattered field
as a superposition of rays reflected along the specular direction.
Then, the contribution backscattered by the wall, evaluated by the
GO approach, is zero but for the case of (¢ =m/2, ¢ =0), which is
never the case for the SAR sensor.

(b) PO solution:
For a plane deterministic surface, no expansion of F is necessary
because the wall is plane and smooth. The scattering matrix entries
can be evaluated by using Equation 15.12, in which ny is replaced
by . The incidence angle on the wall is

W = cos ™! (sin O cos ). (15.16)

The scattering matrix entries are evaluated in terms of the Fresnel
coefficients of the wall Ry:

2sindcos ¢ > > . 2
Shh = —R cos” ¥ cos” ¢ + R sin” ¢|,
hh = D 1 st O st ¢ [—Riw(¥) @ + Ryw() o
(15.17a)
2 cos ¥ sin ¥ cos? @ sin ¢
Sty = Syp = R +R , 15.17b
hv vh cos2 9 n sin2 9 sinz P [ LW(¢) HW(‘I’)] ( )
2sind
Sov Sy cose [—R Lw()sin? ¢ + Ryw () cos® ¥ cos? go],

T 029 + sin? 9 sin? ¢
(15.17¢)

whereas the integral can be evaluated for a wall of height /1 and
length [ as

I = exp (—j2kyo sin¥) exp (—jkh cos ¥)hl cos ¢ sinc(kh cos ¥)sinc(kl sin ¢ sin 3).
(15.18)

15.5.2 Single Return from the Ground or from the Building’s Roof

The electromagnetic field backscattered by a rectangular area of the rough
ground with dimensions a2 and b is evaluated. This area can be set equal to
that illuminated by the field reflected in the specular direction by one
building’s wall. This field component is a random variable, and its mean
and variance are evaluated in terms of the statistical parameters used to
model the surface roughness.
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(a)

(b)
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GO solution:
In the backscattering case, the stationary phase points over the
ground have a unit normal f, which satisfy the following relation:

f, = ki, (15.19)
which is satisfied in the case of normal incidence. Then, the scat-

tering matrix entries can be evaluated by using Equations 15.15,
thus getting

Sun = —2R . (0), (15.20a)
Shy = Syh =0, (15.20b)
Sev = 2R;(0). (15.20c)

The surface integral I; is a random variable. By using Equation
15.10, its mean value (i.e., its coherent component) is given by

<Is>=exp (—2k*0? cos? ) ab sinc(ka sin ) (15.21)

and is negligible because the GO solution applies for ko> 1; more-
over, the surface integral mean square value is given by

<> = (15.22)

ab 1 oo | tan? 9
42 cos* 9 2ma2|C7(0)] <P | 202]C7(0)])’

where C”(0) is the second derivative of the normalized correlation
function C(p) evaluated at p=0.

PO solution:

In this case, the scattering matrix entries can be evaluated by using
Equation 15.12 in which ny is replaced with z for the horizontal
mean plane, thus getting

Shh = —2R () cos I, (15.23a)
Siw = Syh =0, (15.23b)
Sww = 2R}|(¥) cos 9. (15.23¢)

The surface integral I is a random variable. By using Equation
15.10, its mean value (i.e., its coherent component) is given by
Equation 15.21, but is not negligible because ko is not necessarily
high; its variance (i.e., the noncoherent component) is given by

0l =<LIt> —| <[> |

2m . 2
_ exp (4K cos? 9) ab Z (2ko cos D) exp [_ (2kl. sin 9)
m=1

mlm 4m

(15.24)
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15.6 Double Return Contributions

The entries of the scattering matrix S, as well as mean and variance of the
integral Is, are hereafter evaluated in closed form for the different double
return contributions. These take place whenever the incident field is first
scattered by the building’s vertical illuminated walls toward the ground
and then scattered by the ground itself back to the SAR and vice versa
(see Figure 15.2b). These backscattering mechanisms are referred to as wall-
ground reflections and ground—wall reflections, respectively.

The field reflected by the wall is always evaluated via the GO solution
according to its deterministic formulation: this situation is present in the
first bounce of the wall-ground reflection, or in the second bounce of
the ground-wall reflection. According to the ground surface roughness,
the field scattered by the ground is evaluated by employing GO or PO:
this happens in the first bounce of the ground-wall reflection, or in the
second bounce of the wall-ground reflection. The cumbersome algebraic
and vector intermediate calculations are skipped and only the final results
are listed.

15.6.1 Wall-Ground Return

(a) GO-GO solution

The GO solution for a field reflected by a wall is a plane
wave directed along the specular direction. Its amplitude and
polarization are obtained by decomposing the horizontally or
vertically polarized incident field into its orthogonal and parallel
components with respect to the wall incidence plane and apply-
ing the proper Fresnel coefficient to each component. Scattering
of this wave by the rough terrain toward the sensor must be
evaluated.

The portion of ground invested by the field reflected by the wall
is a parallelogram of area A given by

Ag = hltan ¥ cos ¢; (15.25)

the incidence angle on the wall is given by

= cos™! (sin 9 cos ¢), (15.26)

whereas the incidence angle for the ground surface stationary
points is given by

2.9 ain?
£ = cos”! <cos J(tan- 9 sin” ¢ + 1)>' (15.27)

V14 tan? 9 sin’ ¢
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The scattering matrix entries are

Sth = 2[-R 1 (O)R1w(¥) cos® ¥ cos® ¢

+ Rj(O)Rw () sin® ] cos 91/ 1 + tan? & sin” ¢, (15.28a)

Shy = Syh = sin2¢[—R 1 (OR 1w (¥)
+ R(ORw(Wh)] cos® 91/ 1 + tan? 9 sin” ¢, (15.28b)

Sw = 2[-RL(ORw (i) sin’ ¢
+ Rj(O)Rw () cos® & cos? ¢] cos /1 + tan? 9 sin” ¢. (15.28¢)

The surface integral I, is a random variable. By using Equation
15.10, its mean value (i.e., its coherent component) is given by

.2
<I4,> = exp [-2(ko cos 3)*] exp (—jk2yo sin ) exp <jkh sin’ & ilcr)ls g)

) 9 si 2
\/1 + tan? & sin? @hl tan O cos ¢ sinc(kl sin 9 sin ¢)sinc (kh w) )

cos v
(15.29)

Moreover, its mean square value is given by

1 t 213 in? 1 t 219 -2
<IAUI:0>=hltan1‘}cos¢ +tan"vsin” ¢ [ an” v sin go:|-

4k2cos?d  2ma2|C"(0)] P 202|C"(0)]
(15.30)

(b) GO-PO solution
GO solution for the field reflected by the wall toward the ground
is obviously equal to the one obtained in the previous section.
Results for the PO solution to the field scattered by the area A,
toward the sensor are presented hereafter. The scattering matrix
entries can be evaluated by using Equation 15.12, in which ng is
replaced by z, the incidence direction is that provided by the wall
specular direction, and the incident polarization depends on the
decomposition of the scattered field in the local (for the ground)
horizontal and vertical polarization states.
The scattering matrix entries are

Shh = An[—2R () cos & cos 2¢] + Bu[sin® & sin 2¢ + R)(9) sin 2¢(1 + cos® 9)],
(15.31a)

Shy = Ap[sin® 9 sin2¢ + R (9) sin 2¢(1 + cos? )] + 2BhR)| (%) cos ¥ cos 2¢,
(15.31b)
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Suh = Ay[—2R | (8) cos & cos 2¢] 4 By[sin® ¥ sin2¢ + R)|(9) sin2¢(1 + cos’ 9],

15.31c
Sev = Ay[sin® ¥ sin 2¢ + R, (9) sin 2¢(1 + cos? §)] + 2ByR)|(9) cos ﬁc(os 2¢, !
(15.31d)
where

A = Riw() cos® & cos® ¢ — Rjw(i) sin® ¢, (15.32a)

Bh = (Row(¥) + R)jw(¥)) cos 9 cos ¢ sin ¢, (15.32b)

Ay = —(Row(¥) + Rjjw(¥)) cos ¥ cos ¢ sin o, (15.32¢)

By = —R w()sin® ¢ + Ryw() cos? 9 cos? ¢. (15.32d)

The surface integral I4, is a random variable. By using Equation
15.10, its mean value (i.e., its coherent component) is given by

s 2
<> exp 20k cos 9 lexp (k2 sin ) exp jesind 020 )

os ¥
. o . sin® & sin®
hltan ¥ cos ¢ sinc(kl sin ¢ sin ¢)sinc | kh —— |.
cos ¥
(15.33)
Moreover, its variance is given by
01240 = exp (—4k*0? cos® $)hl tan 9 cos ¢
Zm 2 . . 2
Z (Zka'cosﬁ l_c o | (2kl. sin ¢ sin 1Y) . (15.34)
T 4m

15.6.2 Ground-Wall Return

This contribution is equal to that of the wall-ground as far as the reflection
over the wall is modeled by GO. As a matter of fact, among all waves
scattered by the rough ground surface (evaluated by GO or PO), only the
one propagating toward the wall that is successively specularly reflected by
the wall toward the sensor is of interest. The length of the path followed
by this wave, which first hits the ground and then the wall, is the same as
the one followed by the corresponding wave, which first hits the wall and
then the ground. Then, the two double-scattered contributions sum up
coherently and the overall double-scattered field is twice the fields evalu-
ated in Section 15.6.1, whereas the overall scattered power density is four
times the powers evaluated in Section 15.6.1.
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15.7 Triple Return Contributions

The entries of the scattering matrix S, as well as mean and variance of the
integral I, are hereafter evaluated in closed form for the different triple
return contributions. Two different triple-scattering contributions take place
(see Figure 15.2c): the first one is obtained whenever the incident field is
first scattered by the building’s illuminated wall toward the ground; then, it
is scattered by the ground itself back to the wall and finally it is scattered by
the wall toward the SAR sensor. The second one is obtained whenever the
field is first scattered by the ground toward the building’s wall; then, it is
scattered by the wall toward the ground and finally it is scattered by the
ground toward the SAR sensor. These mechanisms are referred to as wall-
ground-wall reflections and ground-wall-ground reflections, respectively.
The cumbersome algebraic and vector intermediate calculations are
skipped in the following sections and only the final results are listed.

15.7.1  Wall-Ground-Wall Return

The wall-ground-wall contribution only arises in the case of rough terrain
[13]. It can be evaluated using a full GO approach or considering the PO
solution for the scattering over the ground.

(a) GO-GO-GO solution
The two GO reflections from the wall (first and third bounces) can
be treated as they are in Section 15.6 for the double-scattering
contributions, whereas the field backscattered in the second
bounce by the ground can be evaluated as it is in Section 15.5.2a
for the GO solution to the single backscattered contribution from
the ground.
The scattering matrix entries are

1

(cos? ¥ + sin®d sin? @)

Sun = 2mwﬁ&mw+me%w%a#um%

+ [Riw() cos® ¥ cos® ¢ + Ryw (i) sin® ¢] 2}, (15.35a)
Shv = Svh = !

 (cos2 ¥ +sin? 9 sin? @)

cos ¥ sin ¢ cos ¢(sin? ¢ — cos® & cos? ), (15.35b)

3 2RO)Riw() + Ryw()I*

1
™ (cos? 9 + sin? & sin? @)

5 ZR(O){ [Riw(p) + RHW(tlf)]z cos?9 cos? ¢ sin® ¢

+ [Riw() cos® ¥ cos® ¢ — Ryw (i) sin® ¢] 2}, (15.35¢)

where R(0) = R.(0) = —R(0).
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<IR0>

<IROI;‘{U> = hltan 9 cos ¢

The surface integral I is a random variable. By using Equation
15.10, its mean value (i.e., its coherent component) is given by

_ 1 12,2 2 o / .

= osg &P (—2k“0° cos” ) exp (—j2ky, cos ¢sin )
exp (j2kx; cos ¢ sin¥) exp (—jkb cos ¢ sin ¥) ab sinc(kl cos ¢ sin )
sinc(kl sin ¢ sin ), (15.36)

and is negligible because the GO solution applies for ko >>1;
moreover, the surface integral mean square value is given by

1 1 [ tan? &

4k2 cos* & 2wa2|C"(0)| exp | — 20'2|C”(O)|] . (15.37)

(b) GO-PO-GO method

The two GO reflections from the wall (first and third bounce) can
be treated as done in Section 15.6 for the double-scattering con-
tributions, whereas the field backscattered in the second bounce
by the ground can be evaluated as done in Section 15.5.2b for
the PO solution to the single backscattered contribution from the
ground.

The scattering matrix entries are

1
(cos? ¥ + sin® ¥ sin? ¢)*
+2cos® ¥ cos® g sin® @[ 2R | (HR w ()R w(¥) + R (R (W)
+ 2R (DR Lw ()R w () + Ry ()R ()] + 2R L(9)R7y () cos I sin* @],

[2R | (9)R? () cos’ & cos*

(15.38a)
She =S =y siiz 9sin? ) [2cos” dsingcos”¢
[ RL@)RL (@) = R LR ()R jw () + Ry (R .w (W)Rw ()
+R) ()R ()] +2cos? I sin’ pcos @ [R . ()R w ()R jw ()
— R ()R () — Ry (DR Lw (@) Rjw (W) + RL()RGw ()] ], (15.38b)
Sey = L 2R (9)Rfy () cos® § cos* ¢

(cos? & + sin® ¥ sin? ¢)?
+ 205’9 cos”sin®g[2R | ()R Lw ($)Ryw (%) + RL(O)Rjy ()

— 2R (DR w()Ryw (@) + RL()R3 ()] + 2R ()R (#) cos & sin® o]
(15.38¢)
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The surface integral Ig, is a random variable. By using Equation
15.10, its mean value (i.e., its coherent component) is given by
<Ig,> = exp(— 2k%0? cos® ) exp ( j2k[x£) — Yo tan ¢])
exp(—j2ky,[sin 9 cos ¢ — tan ¢])
exp(—jkh tan I cos? gsin® — sin ¢]) hl tan 9 cos ¢
sinc(kl sin 9 sin ¢) sinc (kh tan 9] cos? ¢ sin & — sin ¢]). (15.39)
Moreover, its variance is given by

+00 2m
o2 (2ko cos ¥)
R = exp(—4K%0% cos 0) hltan 9 cos pmll Y | "

m=1

. 2
exp l—w . (15.40)

4m

15.7.2 Ground-Wall-Ground Return

Use of the GO solution for wall scattering implies that the field backscat-
tered by the wall is zero so that the ground-wall-ground term does not
contribute to the overall field backscattered to the SAR.

15.8 Numerical Examples

In this section, we numerically evaluate the RCS of the element of the urban
structure described in previous sections as a function of the look angle ¥,
polarization, building orientation angle ¢, building size hl, and surface
roughness. The RCS is defined as

4mr? <|Eo|*>

|Eof?

We separately compute the RCSs corresponding to single-, double-, and
triple-scattering contributions. We assume the frequency f=9.6 GHz
(A =0.031 m), typical of X-band SAR systems and that both the building’s
wall and ground have a relative dielectric constant equal to 15 - j0.1. The
building is located on rough soil and both its height & and length [ are 20 m.

We first consider very rough soil whose height standard deviation o is
0.08 m and whose correlation length [ is 0.3 m. In this case, the GO solution
applies to the ground.

Single-scattering contribution from the wall is negligible except that for
¥ = w/2 and ¢=0 and is not considered here. For the assumed ground
roughness, the single-scattering contribution from the ground can be evalu-
ated using GO, and the corresponding RCS is plotted in Figure 15.4 as a
function of the look angle. Note that in this case hh and vv RCS are equal,
and cross-polarized (i.e., hv and vh) RCS is zero. The latter value is related

RCS = (15.41)
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FIGURE 15.4

GO RCS vs. incidence angle ¥ for single scattering from a very rough terrain whose height
standard deviation o is 0.08 m and whose correlation length I is 0.3 m. Illuminated effective
area is 400 m?, frequency is 9.6 GHz (A =3.125 cm), and both wall and ground have a relative
dielectric constant equal to 15— j0.1.

to the approximations employed by the KA, and in practice the cross-
polarized RCS is not zero; however, it is certainly negligible with respect
to the copolarized (i.e., hh and vv) one.

With regard to the double-scattering contribution, it can be properly
evaluated by using the GO-GO solution. Corresponding RCS for different
polarizations are plotted in Figure 15.5 as a function of the look angle ¥ for
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FIGURE 15.5

(@), (c), (e): GO-GO RCS vs. incidence angle ¢ for wall-ground double scattering. Wall orien-
tation ¢ is 0° (solid line), 15° (short dashes), 30° (long-spaced dashes), and 45° (long dashes). (b),
(d), (f): GO-GO RCS vs. wall orientation angle ¢ for wall-ground double scattering. Look angle
¥ is 23° (solid line), 45° (short dashes), and 60° (long-spaced dashes). For all plots, wall height
h and length [ are 20 m. Terrain roughness, frequency, and wall and ground relative dielectric
constant are equal to those of Figure 15.4.

(continued)
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FIGURE 15.5 (continued)
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FIGURE 15.5 (continued)

different values of the wall orientation angle ¢ and also as a function of ¢
for different values of 9. In all cases, RCS is zero at 0° and 90°, as expected.
Note also that for & near to 90° a peak appears: this is due to the field
coherent component. As a matter of fact, the latter is always negligible due
to the first exponential of Equation 15.29, except for the near-grazing angle
incidence, in which case cos ¥ is small. However, this is a spurious result
due to the employed approximations: in fact, we recall that KA and hence
GO and PO do not hold at near-grazing angle incidence. Let us now analyze
the different polarizations. At hh polarization, RCS is almost constant with
respect to the look angle for small values of the wall orientation angle. As
the latter increases, the range of ¢ values over which the RCS remains
constant is reduced. If the orientation angle is small, the diagram of RCS



320 Remote Sensing of Impervious Surfaces

shows two valleys at vv polarization, corresponding to the pseudo-Brewster
angles of wall and ground. As the orientation angle ¢ increases, this effect
tends to disappear, due to the mixing of TE and TM Fresnel coefficient (see
Equations 15.28). Finally, for cross-polarized channels, the RCS dependence
on ¥ is weak, and, similarly to the hh case, the range of ¥ values over which
RCS remains constant is reduced as ¢ increases. With regard to the depend-
ence on ¢, for copolarized channels, the dependence on the orientation
angle is weak for small values of the incidence angle, except that for ¢
near to 90°. For cross-polarized channels, a strong dependence on ¢ is
present also for small values of ¢, when RCS rapidly changes from zero
(~0o dBm?) to more than 0 dBm?.

Triple-scattering contribution is plotted in Figure 15.6. By comparing
Figures 15.5 and 15.6, we note that triple-scattering contribution is compar-
able to double scattering for hh polarization and small incidence angles,
and in all other cases it is negligible with respect to double-scattering
contribution.

Let us now move to consider the same building and the same illumin-
ation, but a much smoother ground, whose roughness is characterized by a
height standard deviation o equal to 0.001 m and by a correlation length I,
equal to 0.02 m. In this case, the PO solution applies for the ground.

In this case, single-scattering contribution must be evaluated by using PO
and double-scattering contribution must be evaluated by using GO-PO. In
Figure 15.7, single-scattering RCS is plotted vs. the look angle. At variance
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FIGURE 15.6

GO-GO-GO RCS vs. incidence angle 6 for wall-ground-wall triple scattering. Wall height & and
length I are both 20 m. Terrain roughness, frequency, and wall and ground relative dielectric
constant are equal to those of Figure 15.4. Wall orientation ¢ is 0° (solid line), 15° (short dashes),
30° (long-spaced dashes), and 45° (long dashes).
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FIGURE 15.6 (continued)

with the previous example, in this case hh and vv RCS are not equal. In
addition, in this case cross-polarized (i.e., hv and vh) RCS is zero.
Double-scattering RCS vs. the look angle is plotted in Figure 15.8. The
main difference with respect to the previous example is the strong return for
¢ =0 in the copolarized channels, due to the presence of the strong coherent
component. In addition, for ¢ not near to zero, a stronger dependence on ¥
with respect to the previous example is shown, and hv and vh polarizations
are not equal. In addition, in this case the effect of the pseudo-Brewster
angle is visible on the vv channel, and the cross-polarized return is null for
¢=0. We also note that there is always a strong dependence on the orien-
tation angle when the latter is small. These RCS fast variations are due to the
strong coherent component. For orientation angles larger than about 10°, the
dependence on ¢ is weaker, especially for small look angles. By comparing
Figures 15.7 and 15.8, we note that double scattering is the main scattering
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FIGURE 15.7

RCS vs. & for single scattering from a moderately rough terrain whose height standard
deviation o is 0.001 m (i.e., ko =0.314) and whose correlation length /. is 0.02 m. Illuminated
effective area is 400 m?, frequency is 9.6 GHz (A =3.125 cm), and both wall and ground have a
relative dielectric constant equal to 15— 0.1.

mechanism for a wide range of scattering and orientation angles; a signifi-
cant exception is the case of illumination at near vertical incidence for
copolarized channels.

Triple-scattering contribution is plotted in Figure 15.9. By comparing
Figures 15.8 and 15.9, we note that triple-scattering contribution is negligible
with respect to that of double scattering, except that for small incidence
angles and nonnull building orientation angle. As expected, triple-
scattering contribution does not show a large coherent component for
¢ =0, at variance with the double-scattering case.
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FIGURE 15.8
(@), (c), (e), (g): GO-PO RCS vs. & for wall-ground double scattering. ¢ is 0° (solid line), 15°
(short dashes), 30° (long-spaced dashes), and 45° (long dashes). (b), (d), (f), (h): GO-PO RCS vs.
¢ for wall-ground double scattering. ¥ is 23° (solid line), 45° (short dashes), and 60° (long-
spaced dashes). For all plots, wall height / and length [ are 20 m. Terrain roughness, frequency,
and wall and ground relative dielectric constant are equal to those of Figure 15.7. Note that
zones with very rapid oscillations, at very small incidence and orientation angles, are due to the
coherent field component.

(continued)
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FIGURE 15.8 (continued)
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FIGURE 15.9
GO-PO-GO RCS vs. incidence angle & for wall-ground-wall triple scattering. Wall height h
and length [ are both 20 m. Terrain roughness, frequency, and wall and ground relative
dielectric constant are equal to those of Figure 15.7. Wall orientation ¢ is 0° (solid line), 15°
(short dashes), 30° (long-spaced dashes), and 45° (long dashes).

(continued)
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FIGURE 15.9 (continued)

15.9 Slant-Range Distribution of Canonical
Scattering Solutions

The SAR signal formation is determined by the slant-range distribution
discussed in Section 15.3 of the radar returns evaluated in closed forms in
Sections 15.5 through 15.7. This slant-range distribution is linked to the time
of arrivals of the pulses to the SAR. Time of arrival for each contribution, f;,
is proportional to the corresponding optical ray path length: then, single,
double, and triple returns are located in the SAR image at different slant-
range coordinates r;=ct;/2 (see Figure 15.10), according to the rationale
hereafter presented.

In the time interval before t;, the sensor receives only the field back-
scattered from the ground and the reflectivity function value is determined
just by the RCS of the rough terrain.
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FIGURE 15.10
Relevant to the slant-range location of the single, double, and triple returns.

In the time interval (t;, t,), the field backscattered by the terrain is to be
summed up to the return by part of the building roof and by the vertical wall;
the layover phenomenon takes place and the reflectivity function increases
with respect to the sole presence of the radar return from the ground.

At time f,, all the double reflection contributions are received and
summed up to the terrain, roof, and wall single-scattering contributions.

In the time interval (f,, t3), the SAR sensor receives the triple reflection
contribution.

In the time interval (f,, t4), the SAR sensor receives the building roof
return.

In the interval (4 ts5), no radar return is achieved and the shadowing
phenomenon takes place.

After the time ts, only the ground backscattering contributes to the radar
return.

Note that for different building heights or widths or for different look
angles, the presented scenario may change and the reflectivity map (and, as
consequence, the SAR images) may even exhibit different patterns. For
instance, if t3 <t, triple reflection contribution is always received by the
sensor together with the field backscattered from the building roof. Con-
versely, if t3>t, the triple reflection contribution is partly located in the
shadow area. The condition t3 > f4 is verified if

L
h > 5 sin 29; (15.42)

then, if h>L/2 the triple contribution term reduces the dimension of
the shadowed area on the SAR image. In addition, it may occur that
ty < tp, hence the whole roof contribution is detected before the double
reflection contribution.
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15.10 Comparison between Model Predictions
and SAR Image Appearance

Theoretical considerations reported earlier can be verified by observing the
real high-resolution SAR image of the center of Munich (Germany),
depicted in Figure 15.11. This image was acquired by the X-band E-SAR
airborne system of the German Aerospace Center (DLR). The main param-
eters of the system are collected under Table 15.1. In Figure 15.11, the
illumination is approximately from the bottom of the image. Let us focus
attention on the building “Alte Pinakothek,” indicated by an arrow in
Figure 15.11. By moving upward from the bottom of the image, we notice
first a gray area corresponding to the return from the ground; then, a very
bright stripe corresponding to the southwest wall double reflection and
layover; further above, a nonuniform dark gray area generated by the
scattering from the roof (which is not flat and has some irregular objects
on it, so that it is partly shadowed); and finally a black stripe corresponding
to the building shadow. Moving up further, we find again a gray area
representing the return from the ground. This sequence of stripes with
different intensities is foreseen by the model presented in the previous
sections and is a signature of the building geometry, so it can be used to
derive building height and size [18]. But there is also an additional interest-
ing feature that is not related to the building geometry: the bright southwest
wall layover stripe is brighter on its right part, where some aligned,

FIGURE 15.11

SAR image of the center of Munich, Germany. (Courtesy of DLR.) This image was acquired by
the X-band E-SAR airborne system. The arrow at the bottom-right part of the image points to the
building of the ““Alte Pinachotek.” It also indicates the north direction.
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TABLE 15.1
Main X-Band E-SAR System Parameters

Frequency [GHz] 9.60
Polarization HH

PRF [Hz] 2000
Number of looks 8
Platform altitude [m] 3231
Look angle [degree] About 50
Azimuth resolution [m] 3.0
Range resolution [m] 2.0

even brighter, points can be noticed. Such a difference is not visible on
optical images and is not related to the wall geometry, which is the same
in both parts of the wall. The reason is that the building was partly
destroyed during the Second World War; the eastern part of the wall was
reconstructed afterward with a different material (this explains the different
brightness); and steel pipes were added (this explains the brighter points).
Accordingly, this feature illustrates, at least qualitatively, the dependence of
the building radar return on the wall complex dielectric constant, as also
foreseen by the model presented in this chapter.
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16.1 Introduction

Automatic roof mapping using remote sensing imagery has always been a
challenging research topic in remote sensing [1-4]. In general, high spatial
resolution and multispectral information are two important information
components for automatic classification or extraction of building roofs.
The high spatial resolution provides geometric details for delineating
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individual objects, whereas the multispectral information supplies color
information for differentiating objects with different spectral reflectance.

However, most remote sensors, such as Landsat ETM+-, SPOT, IKONOS,
QuickBird, and Z/I-DMC, collect high-resolution panchromatic (Pan) images
and low-resolution multispectral (MS) images simultaneously. An optimal
roof mapping result is usually difficult to achieve with the direct use of either
the original Pan image or MS image.

For example, Landsat TM images contain a high level of spectral infor-
mation, but their spatial resolution (30 m) is too coarse to interpret build-
ings. SPOT Pan images have higher spatial resolution (10 m), in which
buildings can be interpreted visually, but their spectral information is not
sufficient for digital classification. Similar to QuickBird MS and Pan images,
for example, roofs of individual family houses can be identified in Quick-
Bird MS images (2.8 m) according to color differences between roofs and
their surroundings, but the roof edges cannot be clearly delineated.
In QuickBird Pan images (0.7 m), however, roof edges can be clearly iden-
tified, but the gray value in the Pan images is not sufficient for classification.

To achieve accurate roof mapping results, it is, therefore, necessary to
combine the spectral information of the MS image and spatial information
of the Pan image of a given sensor in the building roof extraction. One
efficient way to combine the spectral and spatial information is image
fusion, that is, pan-sharpening the MS image using the Pan image.

This chapter introduces two different types of research studies on roof
mapping using pan-sharpened remote sensing imagery: (1) pixel-based
postclassification for small-scale roof mapping using fused Landsat TM
and SPOT Pan images and (2) object-oriented classification for medium-
scale roof mapping using pan-sharpened QuickBird images. Other types of
techniques for roof mapping have also been reported [1,5,6].

16.2 Small-Scale Roof Mapping Using Fused SPOT Pan
and Landsat TM Images

For detailed urban roof mapping, image fusion, multispectral classification,
and spatial feature postclassification were performed in this study. The
satellite images and the principles of each processing step are described in
the following sections.

16.2.1 Satellite Images

The study area was the entire urban area of Shanghai, China, in the late
1980s. It covered more than 30 X 30 km?. Most buildings in the center areas
were small and close to each other. Bigger buildings (about 10-20 m in
width) increased from the city center to the outskirts and they aligned
relatively regularly.
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Landsat TM, acquired on 18 May 1987, and SPOT Pan, acquired on 25
October 1989, were used for the study (Figure 16.1a and b). The TM bands 3,
4, and 7 were selected for building detection because these bands display
building areas, built-up areas, green areas, and water areas well.

16.2.2 Fusion of Landsat TM and SPOT Pan

For detailed roof mapping using Landsat TM and SPOT Pan images, the
synthetic variable ratio (SVR) image fusion method [7] was applied to the
TM and SPOT Pan images (Figure 16.1c). The SVR method was developed
based on the ratio techniques of Price [8] and Munechika et al. [9]. The SVR
method preserves the spectral information of original TM images better
than the widely used IHS method. In addition, its spatial resolution is as
good as that of IHS fusion [10]. Hence, the SVR method leads to higher
classification accuracy than the IHS method when it is applied to the fusion
of SPOT Pan and Landsat TM images [11].

The principle of the SVR method can briefly be described with the fol-
lowing formula [7]:

XSP; = Pany x —2Hi (16.1)
Par1HSyn
Pangsyn = Y XSk, (16.2)

where
XSP; is the gray value of the ith band of the fused TM-SPOT image
XSy is the gray value of the ith band of the magnified TM image, which
has the same pixel size as the SPOT pan image
Pany is the gray value of the SPOT Pan image
Pangisyy, is the gray value of the synthetic panchromatic image simu-
lated using XSg;
¢; is the regression coefficient of the variable Pany and XSg;

16.2.3 Multispectral Classification

Since the unsupervised clustering method is better suited for classifying
heterogeneous classes than supervised classification [12-15], the unsuper-
vised ISODATA clustering method (ERDAS) was used for the spectral
classification. In the unsupervised classification, the fused image was first
subdivided into 50 clusters. The resulting classes were then extracted
through additional interpretation of the 50 clusters. The classified buildings
from the fused and original TM images are shown in Figure 16.2.

From Figure 16.2, it can be seen that visible big buildings (about 10-20 m
in width) were extracted from the fused TM-SPOT image—although with
significant noise (Figure 16.2b), while they could not be extracted from the
original TM image (Figure 16.2a). The advantage of using a fused image for
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FIGURE 16.1 (See color insert following page 292.)
Medium-resolution satellite images for roof mapping (300 X 180 pixel section, 10 m pixel).
(a) SPOT Pan image; (b) TM bands 3, 4, and 7 in blue, green, and red; and (c) fused TM-SPOT

image.
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FIGURE 16.2
Multispectral classification of buildings. (a) From the original TM image and (b) from the
TM-SPOT fused images.

roof mapping, instead of the original TM image, can clearly be seen by
comparing the classification results in Figure 16.2.

16.2.4 Spatial Feature Postclassification

Despite the use of the fused image for the optimization of roof mapping, the
accuracy of the classification result was still not satisfying for the detection
of the housing development, because many nonbuilding objects were falsely
classified as buildings (Figure 16.2b, also see Figures 16.4a and 16.5a).
To remove the nonbuilding objects that have different spatial charac-
teristics from buildings, a filtering algorithm based on the co-occurrence
matrix technique was developed. Because the co-occurrence matrix is
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direction-dependent [16,17] and the dominant alignment orientation of the
classified buildings was in diagonal direction, the co-occurrence matrix
transformation was performed in the four diagonal directions.

The texture measure homogeneity was used for the texture analysis in the
co-occurrence matrix-based filtering:

Homogeneity: HOM = = I\i Q) (16.3)
8 Y _1;0 i— 1+‘l—]|l .
—| ]_O
where
i and j are the coordinates in the co-occurrence matrix space
f(i, j) is the co-occurrence matrix value at the coordinates i and j
N is the gray value of the input image

The size of the operation window used for the filtering was 3 X 3 pixels. The
filtering results in each of the four directions are shown in Figure 16.3. In
comparison with the input image (Figure 16.4a), the direction dependence of
the co-occurrence matrices is indicated in Figure 16.3a through d. In each
direction, one side of the airport runway was fully filtered. The final result
filtered in the four directions (Figure 16.4b) was obtained through logical
combination (logical AND) of the four results (Figure 16.3a through d).
Common methods for noise filtering are, for example, simple texture ana-
lysis methods [18], which filter noise by directly calculating the texture

FIGURE 16.3

Results of the co-occurrence matrix-based filtering in four diagonal directions with a 3 X 3
operation window and homogeneity texture measure (540 X 380 pixel section, 10 m pixel).
(a) North west, (b) north east, (c) south east, and (d) south west.
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€Y (b)
(c) (d)
FIGURE 16.4

Comparison of buildings extracted using multispectral classification and buildings filtered using
different methods (520 X 360 pixel section, 10 m pixel). (a) Multispectrally classified buildings, (b)
result of the co-occurrence matrix-based filtering in the four diagonal directions with the texture
measure homogeneity, (c) result of simple texture analysis filtering with the texture measure
energy, and (d) result of simple texture analysis filtering with the texture measure homogeneity.

measures in original images. They are, however, insufficient for building
filtering. Visual comparison of the co-occurrence filtered (Figure 16.4b)
with the simple texture analysis filtered results (Figure 16.4c and d) shows
clearly the advantages of co-occurrence matrix-based filtering: the airport
(right), the railway station complex (bottom right), parts of streets (bottom
left), and the gyms (top middle) were completely filtered in Figure 16.4b,
whereas they were only partially filtered in Figure 16.4c and d.

Figure 16.5a through d show another section of the extracted buildings
before and after the feature filtering. It can be seen that a significant amount
of nonbuilding features (Figure 16.5¢) exist in the multispectrally classified
building roofs (Figure 16.5a). A clear impression about the improvement of
the co-occurrence matrix-based filtering over the normal texture analysis
filtering can be obtained by comparing Figure 16.5b and d. The same texture
measure homogeneity was used in both methods. A detailed description of
the filtering process can be found in the relevant publication [19].

16.2.5 Accuracy Assessment

A total of 400 random points were selected as reference pixels in each of two
assessment areas (Area 1: Figure 16.4 and Area 2: Figure 16.5) for accuracy
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(@) (b)
© (d)
FIGURE 16.5

Comparison of the roof mapping results before and after performing a spatial feature filtering with
a 3 X 3 operation window (500 X 360 pixel section, 10 m resolution). (a) Building roofs classified
from the TM-SPOT fused image, (b) building roofs improved using the co-occurrence matrix-based
filtering in four diagonal directions and the texture measure homogeneity, (c) nonbuilding feature
removed by the co-occurrence matrix-based filtering in four directions, and (d) building roofs
improved using a normal texture analysis filtering and the texture measure homogeneity.

assessment. The user accuracy and the kappa statistics of classified building
roofs before and after the texture filtering are shown in Table 16.1.

The average user accuracy of the two areas has increased from 53.7% to
83.5% after the co-occurrence matrix-based improvement and the average
kappa statistics has increased from 0.532% to 0.823%. Both the average user
accuracy and the average kappa statistics increased by around 30% by using
the co-occurrence matrix-based filtering.

TABLE 16.1
User Accuracy and Kappa Statistics of the r before and after the Texture Filtering

User Accuracy (%) Kappa Statistics

Multispectral classification Area 1 48.57 0.4379
Area 2 58.89 0.5261

Postprocessing with co-occurrence Area 1 85.71 0.8480
matrix-based filtering Area 2 81.25 0.7995
Postprocessing with normal texture Area 1 68.75 0.6693

analysis filtering
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The accuracy improvement through normal texture analysis filtering
with the texture measure homogeneity was also assessed in the first assess-
ment area (Figure 16.5d) to compare the contributions of the co-occurrence
matrix-based filtering and the normal texture analysis filtering. The assess-
ment method was the same as earlier and the accuracy results are shown
in Table 16.1. It can be seen that the accuracy of the co-occurrence matrix-
based filtering is ~15% higher than that of the normal texture analysis
filtering.

16.3 Medium-Scale Roof Mapping Using Fused QuickBird
Pan and MS Images

For medium-scale roof mapping using high-resolution satellite images, new
image fusion and classification techniques were used, because the trad-
itional image fusion methods, such as IHS, PCA, Brovey, and wavelet
fusion, introduce significant color distortion for the fusion of QuickBird
(or IKONOS) Pan and MS images [20], and traditional pixel-based classifi-
cation techniques cannot produce satisfactory results for high-resolution
images [21,22].

The new image fusion method—Pansharp of PCI Geomatica—was used
for the fusion of QuickBird MS and Pan images in this study, because the
color distortion is significant when the SVR fusion method (used for the
small-scale roof mapping earlier) is employed to fuse the MS and Pan
images of the new sensors, such as Landsat ETM+, IKONOS, and QuickBird
[20], and the PCI Pansharp produces superior fusion results [23].

The object-oriented classification of eCognition was applied to the roof
mapping using pan-sharpened QuickBird MS images, because traditional
per-pixel-based classification techniques are not capable of handling the
gray-value variance within individual classes introduced by high spatial
resolution, and object-oriented classification has demonstrated a promising
direction for handling the high-resolution images [24].

16.3.1 Satellite Image Used

The images selected for this study consisted of two QuickBird scenes, both
containing an MS (2.8 m) and a Pan (0.7 m) image. The first scene was a
typical suburban area located in Oromocto, New Brunswick, Canada,
covering 3.2 km by 2.6 km, which was collected on August 8, 2002. The
second scene was a typical rural area, close to Fredericton, New Bruns-
wick, Canada, covering 1.3 km by 1.2 km, collected on 26 July 2002. The
reasons for choosing these two scenes were to evaluate the effectiveness of
object-oriented classification for typical suburban areas and rural areas in
Atlantic Canada. A subset of each of the two scenes is shown in Figures
16.6 and 16.7.
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FIGURE 16.6 (See color insert following page 292.)
QuickBird multispectral image of suburban scene in Oromocto (subset, 2.8 m resolution).

16.3.2 Image Fusion

The image fusion method—PCI Pansharp—used in this study is a statistics-
based fusion technique, which solved the two major problems in image
fusion—color distortion and operator (or dataset) dependency. It is different
from existing image fusion techniques in two principal ways [23]:

FIGURE 16.7
QuickBird multispectral image of rural scene close to Fredericton (subset, 2.8 m resolution).
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1. It uses the least-squares technique to find the best fit between the
gray values of the image bands to be fused and to adjust
the contribution of individual bands to the fusion result to reduce
the color distortion.

2. It employs a set of statistic approaches to estimate the gray value
relationship between all the input bands to reduce the influence of
dataset variation and to automate the fusion process.

The fused images of the two study scenes are shown in Figures 16.8 and
16.9, from which it can be seen that the spectral information of the fused
images is well preserved, that is, the color of the fused images is almost
identical to that of the original multispectral images (Figures 16.6 and 16.7).

16.3.3 Object-Oriented Classification

Object-oriented classification consists of two major processing components:
(1) segmenting an image into meaningful segments and (2) classifying the
segments into different classes.

Usually, segmentation is processed in two steps:

1. Performing initial segmentation to generate primitive subsegments

2. Selecting segmentation parameters to merge the subsegments
(primitives) to form meaningful segments

FIGURE 16.8 (See color insert following page 292.)
Pan-sharpened QuickBird image of the suburban scene produced from Figure 16.6 and the
corresponding QuickBird Pan image (subset, 0.7 m resolution).
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FIGURE 16.9
Pan-sharpened QuickBird image of the rural scene produced from Figure 16.7 and the corre-
sponding QuickBird Pan image (subset, 0.7 m resolution).

In the classification component, the following two processing steps are
required:

1. Building a rule base for knowledge-based classification

2. Classifying the objects according to meaningful segments and rule
base

16.3.3.1 Segmentation

First, a region-growing approach was applied to the segmentation of the
image for producing homogeneous primitive subsegments (Figure 16.10).

The operator was then required to define three interrelated parameters—
scale (f), shape weighting factor (1-w), and smoothness weighting factor
(1-w;)—to merge the subsegments (primitives) to form meaningful seg-
ments [25]. The relationships between the three parameters (f, 1-w, and
1-w,) are described by the equations [25,26]:

f=wx hspectral + (1 —w) x hshape/ (16.4)

hshape = W X hcompact + (1 — we) X Hsmoothness, (16.5)

where
hspectral Stands for spectral heterogeneity—a measure of heterogeneity
change after merging two adjacent primitives
hshape stands for shape heterogeneity—a measure of shape change after
the merge of two adjacent primitives
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FIGURE 16.10
Primitive subsegments obtained by performing initial segmentation.

hcompact for compactness heterogeneity—a function of object perimeter
and number of pixels within the object

Bsmoothness 1 smoothness heterogeneity—a function of object perimeter
and the perimeter of the objects bounding box

Weights w, 1-w, w,, and 1-w, are user-assigned weights associated
with hspectrall hshaper hcompact/ and hsmoothnessz l‘eSPECtiVely-

The value f, so-called fusion value or scale parameter, is an indicator of the
overall heterogeneity change for a potential merge between two primitives
(subsegments). Once the fusion value ( f) falls below a user-specified thresh-
old, the merge between two objects will be accepted.

The definition of the three interrelated parameters—scale (f), shape
weighting factor (1-w), and smoothness weighting factor (1-w.)—is an
iterative, trial-and-error process. Numerous combinations of f, 1-w, and
1-w, can be selected and tested according to the operator’s experience.
The best merging result is selected as the final segmentation of the image
(Figure 16.11).

16.3.3.2 Classification

In object-oriented classification, a variety of features based on tone, texture,
shape, and context can be taken into account for the classification of indi-
vidual meaningful segments [27]. A classification scheme based on fuzzy
logic is involved in the classification. In this study, rules for the classification
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FIGURE 16.11
Meaningful segments obtained by merging primitive subsegments (Figure 16.10) through trial-
and-error selection of the three parameters f, 1-w, and 1-w,.

scheme were built using the previously mentioned features and user-
defined membership functions. Using the meaningful segments as the
basic processing units and according to the classification rules built by the
operator, the segments were classified into different classes.

Because fuzzy logic is involved in the classification, it permits image
segments (objects) to partially belong to any class. However, a defuzzifica-
tion process is performed in the end to determine the highest membership
value for a particular image segment and then to assign the segment to an
appropriate class.

In this study, the pan-sharpened QuickBird images were classified into
five classes: roofs of buildings or houses, pavements, bare soil, trees, and
grass (Figures 16.12 and 16.13).

Further examples and detailed descriptions of roof mapping using fused
QuickBird images can be found in the relevant publication [28].

16.3.3.3 Results Comparison

To assess the results of medium-scale roof mapping using pan-sharpened
QuickBird MS images, the original QuickBird MS images of the same areas
were also classified using the same classification method—object-oriented
classification (eCognition)—under the same condition. Figure 16.14 illus-
trates the difference between the roof mapping results from pan-sharpened
MS images and original MS images. It can be clearly seen that
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FIGURE 16.12
Roof mapping result in a suburban area using object-oriented classification (eCognition) and
pan-sharpened QuickBird MS image.

FIGURE 16.13
Roof mapping result in a rural area using object-oriented classification (eCognition) and pan-
sharpened QuickBird MS image.
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FIGURE 16.14

Comparison of roof mapping results from pan-sharpened MS images and original MS images.
(a) and (b) results from pan-sharpened QuickBird images; (c) and (d) results from original
QuickBird images.

1. The boundaries of individual objects are much more detailed in
the results of pan-sharpened images (Figure 16.14a and b) than
those of original MS images (Figure 16.14c and d) (compare the
boundaries of roofs and roads).

2. The results from pan-sharpened images are more accurate than
those from original MS images (compare the circled areas in
Figure 16.14).

Quantitative assessment using randomly distributed points was also con-
ducted. The average overall accuracy was 84% for the classification results
from pan-sharpened QuickBird MS images and 85% for those from the
original QuickBird MS images. Due to limited random points for the evalu-
ation, the improvement at the edges of individual objects resulting from the
pan-sharpening could not be reflected in the statistic results.

However, when both the visual evaluation and statistic assessment are
considered, we can see that the contribution of pan-sharpening to the
classification is the improvement of object detail, including edge, shape,
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and size, while the gray value variation introduced by the pan-sharpening
into individual objects does not affect much the overall accuracy of the
classification result.

16.4 Conclusions

From the two different types of research studies introduced in the chapter,
we can see that an effective image fusion can significantly contribute to the
improvement in accuracy of roof mapping.

When medium-resolution satellite images are used for small-scale roof
mapping, it is impossible to extract building roofs by just using Landsat TM
images. However, if the Landsat TM images are fused with corresponding
SPOT panchromatic images, it becomes possible to extract big buildings.
However, the results extracted using multispectral classification usually
contain much noise due to other objects that have similar spectral reflect-
ance, such as roads and other paved areas. A postclassification process is
required to achieve better roof mapping accuracy.

When high-resolution satellite images are used for medium-scale roof
mapping, traditional multispectral classification techniques are no longer
adequate. Object-oriented classification produces better roof mapping
results. However, if original high-resolution multispectral images, such as
QuickBird MS, are directly used for roof mapping, building and house roofs
can be extracted, but with coarse object boundaries. When pan-sharpened
QuickBird images are used for roof mapping, the object boundaries can be
significantly smoothened and the roof mapping accuracy can be increased.
Some small houses that cannot be mapped using the original QuickBird MS
images can be extracted from the pan-sharpened image.

From the two studies, it has also been recognized that even though pan-
sharpened images can increase the roof mapping accuracy, the final roof
mapping results still contain errors, irrespective of whether medium- or
high-resolution satellite images are used. Such results may suit overall
investigations of housing development. However, for detailed mapping
purposes manual corrections are still required.
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17.1 Background

Impervious surface area (ISA) affects both water quality and water abundance
through its influence on surface runoff. Runoff increases with increasing ISA,
a fact that is well known to developers and watershed managers who must
estimate the amount of surface runoff to streams and rivers resulting from
precipitation events. Localized flooding occurs much more often now in urban
areas than before because of development. Most serious urban flooding and
surface runoff originate from commercially developed sites such as parking
lots or shopping centers. Figure 17.1 shows a large shopping center with
considerable impervious surface cover, punctuated by some scattered trees.
Runoff from this site, which is a large parking lot, would be considerable.
Washout of city streets as well as runoff from agricultural and other
developed surfaces brings with it elevated concentrations of nutrients
(such as nitrogen and phosphorus) and sediment. Nitrogen and phosphorus
in runoff are known to originate from farm practices (fertilizers) and pas-
turage, but also come from suburban and urban lawns and gardens. These
and other constituents are swept into storm sewers and (ultimately) into
streams and estuaries, where they foster the growth of algae. Increased

353
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FIGURE 17.1
Photographs of Eagleview shopping center in Uwchlan Township, Pennsylvania (location C in
Figure 17.3), illustrating an area of high ISA.

sediment loading in streams resulting from increased surface runoff erodes
the land surface over which the runoff must travel to reach sewers and
streams, where the additional volume of water causes increased bank ero-
sion. Sediment itself adversely affects fish habitats, killing off trout and
other game fish. Conversely, infiltration of storm water into the ground,
rather than into streams, acts to purify the water, removing various toxic
constituents such as metals, and ultimately to provide more clean water for
plants, animals, and humans.

Fifty years ago, the chief worry in urban construction was to get rid of the
rainwater as quickly as possible. Emphasis was on flood prevention, but not
on water conservation. As a result, urban engineers developed very efficient
methods using various types of channels to shunt the water away from
where people congregate and deliver that water to the nearest stream.
As urbanization gained momentum, an effort was made to reduce the run-
off through various practices, the most common of which is a detention
pond. Detention ponds result in the slowed release of water to streams but
not in reducing the total surface runoff. Detention seemed to work in
solving the urban flooding problem but not the greater problem of water
abundance and water quality. Gradually, it dawned on people that such
practices were contributing to the pollution of streams and rivers, regardless
of how much city engineers were able to retard surface runoff. In effect the
practice of getting rid of runoff was contributing to a loss of fresh water in
the ground. Later, retention rather than detention became a more acceptable
mode of storm water management. Retention strategies involve the creation
of dry recesses or wetlands to trap and hold rainwater on the property.
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The effect of ISA on both water quality and abundance is therefore
of great economic importance, as well as a matter of public safety. Follow-
ing the national Clean Water Act of 1972, states began to adopt their own
plans for dealing with water pollution and abundance. For example, the
Pennsylvania legislature passed Act 167 requiring municipalities to create
their own Best Management Plans (BMP); other states have similar require-
ments. Currently, most of the BMPs are supposed to address the amount of
increased surface runoff created by development as well as the peak flood
rates engendered.

In principle, developers must account not only for the increased runoff
from construction sites but they are also required to design those sites such
as to retain the amount of increased runoff caused by the development.
Even residential housing construction can produce significant increases in
ISA and surface runoff. Figure 17.2 shows a typical residential neighbor-
hood which, despite the abundance of trees and grass, has an ISA fraction of
approximately 0.5, as measured by satellite (Hebble et al., 2001).

Knowledge of how much additional ISA is created by development and
how much water will be discharged into storm sewers as a result of the
development is crucial for building contractors and for the public, as the
remedial efforts will result in greater costs to consumers such as home
buyers. That knowledge is dependent on an accurate assessment of how
building will change the landscape. At present, how to calculate the amount
of additional storm water runoff created by development is as much an
educated guess as it is science.

FIGURE 17.2
Photograph of typical residential area in Uwchlan Township, Pennsylvania (Acker Park in
Figure 17.3).
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17.2 Surface Runoff and Impervious Surface Area

One of the oldest methods involving the relationship between land use and
surface runoff was developed by the Soil Conservation Service (SCS) more than
25 years ago (Bedient and Huber, 1992). The SCS method, sometimes referred
to as TR-55, determines a quantity called the excess precipitation, Pe, which is
the (cumulative) portion of the precipitation (e.g., in inches) that runs off at the
surface directly during and just after a rainstorm. It is also the equivalent
rainfall depth of the surface runoff, averaged over the area in question, for
example, the area of a watershed basin. Surface runoff can arise from overland
surface flow, flow within drainage pipes and sewers, or flow from the top,
saturated layers of soil near the stream section. This direct runoff rate, qd, is
customarily expressed as cubic feet per second or cubic meters per second.
Rainwater that does not evaporate or is not abstracted into deep layers of the
soil as ground water is left as surface runoff. The total flow rate, Qp, in a stream
consists of this direct surface runoff plus that from ground water, the base flow,
which continues at a much slower rate during and between rainstorms.

The ratio of Pe to the total precipitation P is sometimes referred to as a
bulk runoff coefficient. Since qd can be estimated from hydrograph data
obtained from stream gauges, it is customary to equate Pe to the total
integrated volume of direct runoff Vd, that which reaches the stream as
surface flow, using the relationship Vd/Ap =Pe where Ap is the effective
drainage area. However, direct runoff seldom drains an entire basin, but
rather a much smaller portion of the entire area; Ap is typically 10%-20% of
the total basin area A (Sheeder et al., 2002). In general, the partial drainage
area Ap is not known a priori.

The SCS equations governing the excess rainfall Pe can be written as

_ (P—KSy

where
P is the total (cumulative) precipitation for a rain event
S is a storage parameter related to land use and therefore to ISA and is
directly a function of the so-called curve number (CN)
K is an arbitrary coefficient that was originally determined from obser-
vations to be 0.2

The K value applies best in heavy rainstorms, although K is now thought to
be smaller than 0.2 (possibly as small as 0.05), at least in light or moderate
rainstorms (Sheeder et al., 2002). S represents a potential storage depth and is
defined in terms of the land surface, vegetation, and soil characteristics,
larger values representing more porous surfaces and smaller values repre-
senting more impervious surfaces including nominally pervious surfaces
which, through compaction or lack of vegetation, tend to impede infiltration.
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S is defined in terms of the curve number CN by the formula
S =1000/CN — 10. (17.2)

Note that the value of Pe may vanish for lighter rainstorms or for highly
pervious surfaces (larger S) and approach the value of P for heavier rain-
storms or for highly impervious surfaces (small S). It may even vanish for
relatively heavy rainstorms over highly pervious surfaces such as a forest
where S tends to be large. For typical urban and rural surfaces, S tends to
range between values of 1 and 10 in.

Let us now look at the relationship, albeit highly empirical, between the
land-use parameter S and the total volume of runoff, expressed as a volume
in cubic feet, which would occur as the result of a 25 year rainstorm in
central Pennsylvania, a precipitation amount approximately equal to 4.2 in.
in 24 h. Table 17.1 is constructed for this event, assuming K=0.2 and that
only 20% of the watershed or basin area actually drains the surface precipi-
tation, which is to say we let Ap/A =0.2, as suggested earlier in this section.

Table 17.1 is schematic and meant to illustrate the importance of ISA on
surface runoff. (The relationship between ISA and S is based on our own
estimates derived from examining a wide range of published values.) Most
such calculations in the literature assume that A = Ap (the drainage area is
the same as the entire watershed area), which, in this case, would yield
values five times larger than those shown in the last column of Table 17.1.
Such values appear excessive in our experience.

Let us consider an example for the case where a meadow is replaced by
a dense housing development. In the case of a 25 year rainstorm a devel-
oper would, according to the table, be obliged to account for an increase
of 879 ft* of water per acre of development resulting from the increase in
surface runoff associated with the imposition of impervious surfaces. This
amount of runoff would need to be contained by a pond with dimensions
of approximately 20 ftX20 ftX2 ft for a 1 acre lot. Construction of

TABLE 17.1

S Value (inches), Percent Impervious for Typical Land Surfaces, Including Estimated
Volume of Runoff (Cubic Feet Per Acre for the 25 year Rainstorm: 4.2 in. in 24 h)

Volume of

Percent Runoff (25 year)
Type of Surface Impervious S Value (in.) Storm (ft*/acre)
Parking lot 100 0 3027
Urban center 95 1.1 2352
Dense housing (% acre) 80 1.75 2069
Medium-density residential (% acre lots) 50 3.3 1590
Sparse housing (1 acre lots) 20 43 1380
Meadow 0 54 1190

Woodland 0 8.2 860
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FIGURE 17.3

ISA map for Uwchlan Township for 1996, as determined from Landsat imagery. ISA values are
represented from white to black, with completely impervious areas appearing white and areas
with no ISA represented by black. Eagleview shopping center (Figure 17.1) is denoted by the
letter C. Acker Park (Figure 17.2) is also labeled, along with a number of other housing
developments.

medium-density housing would generate 400 ft* of additional surface run-
off per acre. Clearly, such estimates translate to extra costs for the developer.

The pattern of such medium-density housing is easily recognizable on
satellite imagery, expressed in the form of ISA maps. ISA analyses based on
Landsat imagery for Uwchlan Township in Pennsylvania reveal the character-
istic lattice structure for housing developments (Figure 17.3), whereas com-
mercial centers and complexes appear as more solid white areas. Figure 17.3
shows various types of housing developments identified by name. Locations
marked A or B and C refer, respectively, to the type of medium-density
housing shown in Figure 17.2 and the Eagleview strip mall shown in Figure
17.1; the latter is a fair representation of the urban center category in Table 17.1.

Analyses of this township (Hebble et al., 2001) show a marked increase in
Uwchlan township’s overall ISA between 1986 and 1996; during the same
time period, the area used for residential purposes increased about 20%.
However, when examined according to lot size, it is apparent that most of
the increase in residential ISA had come through growth of relatively low
ISA neighborhoods. Nevertheless, the highest ISA values were found in
commercial areas.

Residential ISA appears to be bounded by a threshold level of ISA. Hebble
et al. (2001) found mostly commercial development with an ISA value on
Landsatimages greater than about 75%-80%, such as the Eagleview shopping
center shown in Figure 17.1. Residential development generally corresponded
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in that study to ISA values between 30% and 70%, while the only residen-
tial areas to exceed this range were town house developments, which are
similar in character to some Uwchlan Township business areas; these
findings are in accord with those published by Arnold and Gibbons (1996).

17.3 Impervious Surface Area and Water Quality

Excess storm water—that which runs off as the result of urban develop-
ment—carries with it increased loading of contaminants, including nutri-
ents (phosphorus and nitrogen) and sediment. Arnold and Gibbons (1996)
suggest a threshold value of 10% for the average ISA within a watershed,
above which the principal stream can be classed as degraded, which is to
say impaired for human use and aquatic life. A well-known diagram
expressing the relationship between stream impairment and ISA was pub-
lished by Schueler (1994) showing various threshold levels for stream
impairment: 0%-5%, little impairment; 5%-10%, impairment begins; 10%—
25%, runoff exceeds ability of stream to process; greater than 25%, severe
impairment with little or no remedial methods available.

In fact, however, some stream degradation begins as soon as urban runoff
begins. Even nonurban factors, such as agriculture and forest land, can
affect the degree of impairment. Within the northeastern United States,
and specifically the Chesapeake Bay Watershed, forest and agricultural
land figure importantly in affecting the nutrient and sediment loading of
storm runoff. Figure 17.4 shows relationship between phosphorus and
percent woodland for approximately 40 watersheds in Pennsylvania. To

3.50
. . y= 0.191190.1423X
3.001 R?=0.5469
250 e y =1.306e70-025%%
T 5004 R2=0.5563
E’ *
< 150
Q.
1.00 .
M ** .
0507 m
0.00 . T T T
0 20 40 60 80 100
% Woodland, ISA
FIGURE 17.4

Phosphorus yield vs. percent woodland or percent ISA for approximately 40 watersheds in
Pennsylvania. Square symbols pertain to the relationship between phosphorus yields and ISA
and the small diamond symbols to the relationship between phosphorus yields and percent
woodland. The two sets of data were used to create the regression equation (Equation 17.5).
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compile these data, daily flow rates were obtained from the U.S. Geological
Surface for a 10 year period from 1989 to 1999 (Evans et al., 2002), and
nutrient concentration was obtained from the Pennsylvania Department of
Environmental Protection (PaDEP). Historical water-quality data were com-
piled for either the 1987-1994 or 1990-1996 period, depending on the avail-
ability of the data collected. From these two datasets and the flow rate
measurements, yearly nutrient and sediment yields (mass per unit area)
were then computed.

Sheeder and Evans (2004) later evaluated these data in the context of
stream impairment for 29 of the watersheds. In Pennsylvania, stream
impairment is assessed using biological techniques, which are commonly
applied to detect ecosystem impairment. Biological data are ideally suited to
detect ecosystem impairment but do not provide information on the causes
of that impairment. Their analysis yielded information on total, impaired,
and unimpaired river mileage within each basin. These basins were then
designated as impaired or unimpaired based on the percentage of total river
mileage listed as impaired.

What Sheeder and Evans found was startling. Using the 95% confidence
limit as a criterion, very sharply defined thresholds for impairment and
nonimpairment existed for the nutrients and sediment yields. These thresh-
olds are listed in Table 17.2.

These earlier results suggest that, while some deleterious effects of
increased nutrient and sediment loads may gradually increase with increas-
ing yields, a striking deterioration occurs within a very narrow range of
nutrient or sediment yields as the latter increase.

All of the approximately 40 Pennsylvania watersheds were subjected to
image analyses in which percent woodland and ISA were determined
by methods described by Hebble et al. (2001). Regressing nutrient and
sediment yields against ISA and percent woodland for each of the app-
roximately 40 Pennsylvania watersheds produced relationships with a high
degree of fit, as shown by Equations 17.3 through 17.5, respectively, for
sediment (Sed), nitrogen (N), and phosphorus (P), expressed in units
of kilogram /hectare/year as functions of percent woodland (%Wood), per-
cent ISA, and the natural logs of the constituents (Ln). P values for the
regressions were very small and the R* values for these three regression

TABLE 17.2

Estimated Nitrogen, Phosphorus, and
Sediment Unit Area Load Thresholds

(kg/ha/year)
Nitrogen 8.64
Phosphorus 0.30

Sediment 785.3
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equations were all approximately 0.65. Values shown to the right of the
equations represent one standard deviation in the measured data used to
create the regressions.

Ln (Sed) = —7.184 + 0.1276 x Ln (%ISA)
—0.01459 x %Wood (+110 kg/ha/year), (17.3)

Ln (N) = 3.6483 — 0.03115 x %Wood (+1.57 kg/ha/year), (17.4)

Ln (P) = —0.375 + 0.20798 x Ln (%ISA)
—0.01556 x %Wood (+0.2 kg/ha/year). (17.5)

It is somewhat curious that nitrogen exhibits no significant correlation with
ISA. (Statistical treatment of the data is described by Haase et al. (2007)).
This surprising result may be attributed to the fact that nitrogen depends
mostly on agricultural sources and tends to be absorbed by trees and other
vegetation.

One might question the absence of agricultural land as a regression
predictor in these equations. Agricultural land area is not expressed here
for a couple of reasons. First, when all the categories of classification are
combined, the sum of agricultural land, woodland, and urban areas is
almost equal to 100% of the area under consideration. This means that,
given two of the categories, the third is essentially prescribed. Second, the
choice of woodland as the nonurban predictor was made because agricul-
tural land is inherently difficult to classify by satellite imagery; for example,
bare soil may constitute plowed fields or a nonagricultural use while grass-
land may serve as pasture, be mistaken for a crop, or represent simply a
meadow. Further justification for the preference for the choice of woodland
over agricultural land, as pertains to the present dataset, is presented by
Chang (2002). In any case, woodland is much easier to identify and classify
on a satellite image than agricultural land. Yet, woodland in itself is more
than a passive predictor—a category that is neither urban nor agricultural.
Woodland and its attendant porous soils have the ability to filter and absorb
nutrient and sediment before these constituents can reach the stream.

Table 17.2, in combination with Equations 17.3 through 17.5, enables one to
assess stream impairment using percentages of woodland and ISA. The
discrete nature of the impairment threshold, moreover, allows one to categor-
ize impairment as either present or not present. In the former condition, one
can tell how seriously degraded the stream is, whereas in the latter condition,
one can assess the stream’s relative absence of contaminants.

17.3.1 Evaluating the Regression Equations

Although a thorough discussion of the accuracy of these regression equa-
tions and how they were evaluated lies outside the scope of this chapter,
a brief comparison of their output with independent measurements or
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estimates of nutrient yields is now presented. Two data sources were
compared with the simple model (Equations 17.3 through 17.5): a set of
observations and output from a complex model. Because Pennsylvania yield
data are limited to that state alone, additional measurements were obtained
for the region outside the state (USGS, 1998). Eighty-four nontidal stream
sites were considered for the Chesapeake Bay Watershed; 36 of these within
Pennsylvania and the rest in Virginia, Maryland, and New York. Output
from a statistical model, SPARROW (Preston et al., 1998; SPARROW, 2006),
was also obtained for additional comparison with the output of Equations
17.4 and 17.5 (sediment data not included). SPARROW requires a large
range of different input parameters, some of which are quite specific and
pertain to land cover, land use, and agricultural practices. Despite the prac-
tical difficulty in its application, this model is considered state-of-the-art and
so can serve as a check on the validity of the regression equations, which
treat ISA in a much more explicit manner than does SPARROW. In contrast,
Equations 17.3 through 17.5 are more transparent in revealing the major
factors in the loading of nutrients and sediment, at least in streams in the
northeastern United States.

In order to compare the simple regression model with SPARROW—and
therefore impart a semblance of credibility to the regression equations
presented here—it was necessary to obtain additional ISA and land classi-
fication estimates for all of the Chesapeake Bay Watershed, as the number of
data points for Pennsylvania was relatively limited. Land surface data were
obtained from Landsat imagery, available on the Pennsylvania Spatial Data
Site (PASDA) and as obtained from the University of Maryland (UMD)
(Pittman, private communication). As a first step, estimates of ISA and
percent woodland created at Penn State and those from the UMD were
compared for both ISA and percent forest cover for overlapping areas in
Pennsylvania. Values of both land-cover parameters were in close agree-
ment, thereby allowing us to use either land surface classifications inter-
changeably and to expand the area over which SPARROW output could be
compared with that from the simple regression model. No comparisons
were made for sediment yields, however, because SPARROW output did
not include sediment and because of large differences in magnitude
between our sediment data (Evans et al., 2002) and those obtained pub-
lished by USGS.

To facilitate comparison and also to allow the user to quickly assess the
health of a particular stream, a stream health index (SHI) was created based
on the relationship between the estimated or measured constituent yields as
referenced to the impairment threshold values referred earlier. Realizing that
the threshold range found by Sheeder and Evans (2004) was very narrow, an
SHI value corresponding to the threshold was assigned an arbitrary value of
zero, only when the estimated yield was within the narrow range of +10% of
the threshold. Nutrient or sediment yields >10% above the threshold but
less than double the threshold value were assigned a value of —1. Yields
equal to or greater than double the threshold value were assigned an SHI
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of 2. Similarly, yields <10% below the threshold but greater than half the
threshold were assigned an SHI of +1. Yields equal to or less than half the
threshold value were assigned an SHI of +2. Accordingly, the values of SHI
for each constituent can range from -2 for seriously degraded streams to +2
for very clean streams. By summing the SHI of each of the three constituents, a
stream can have a net SHI between -6 and +6.

The total (summed) SHI for two or for all three constituents is useful in that
it accounts for the fact that each constituent may yield a different SHI value.
For example, a stream may contain nutrient or sediment yields above the
threshold for one constituent and below for another; typically, however, SHI
for the three constituents tends to vary within +1. The sum for all three
constituents therefore yields a more meaningful gradation of values than
for a single one. Moreover, in reducing the numerical values to discrete
categories, interpretation of the data is facilitated because the data scatter is
effectively minimized. For example, suppose an actual measured SHI was ata
level five times the threshold and the estimated values from the regression
equations indicated a yield only 20% above threshold. Despite the large
difference in yields, the SHI would only differ by one category and yet convey
the fact that the stream is suffering serious impairment. A fuller treatment
of the comparisons between measurements or SPARROW and Equations 17.4
and 17.5 can be found on the web site, http: //www.sharp.psu.edu.

SHI values were determined additionally for the measurements and for
the SPARROW model output. Table 17.3 encapsulates the comparisons by

TABLE 17.3

Comparison of Output from Equations 17.3 and 17.4 with Measurements or Output
from the SPARROW Model for Various Constituents, Showing the Percent of the
Values That Differed by One SHI Category or Less

Percent within

One SHI
Constituent Area Comparison Category
Nitrogen Pennsylvania PSU vs. SPARROW 86
Phosphorus Pennsylvania PSU vs. SPARROW 89
Nitrogen + Phosphorus ~ Pennsylvania PSU vs. SPARROW 77
Nitrogen 4 Phosphorus ~ Pennsylvania SPARROW vs. 69
measurements
Nitrogen 4 Phosphorus =~ Pennsylvania PSU vs. measurements 88
Nitrogen Outside Pennsylvania  PSU vs. SPARROW 80
Phosphorus Outside Pennsylvania  PSU vs. SPARROW 84
Nitrogen + Phosphorus ~ Outside Pennsylvania ~ PSU vs. SPARROW 71
Nitrogen + Phosphorus ~ Outside Pennsylvania ~ SPARROW vs. 48
measurements
Nitrogen 4 Phosphorus =~ Outside Pennsylvania  PSU vs. measurements 34
Nitrogen + Phosphorus  Entire Chesapeake SPARROW vs. 32
Bay Basin measurements

Note: PSU in the comparison column refers to the output from Equations 17.1 and 17.2. Outside
Pennsylvania refers to data within the Chesapeake Bay but not within Pennsylvania.
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showing the percent of the cases for a particular pair of comparisons for
output from Equations 17.4 and 17.5, measurements, and SPARROW. Listed
are the percentages of cases for which the SHI differed by no more than one
SHI category.

The table indicates that the PSU model (Equations 17.4 and 17.5) predicts
SHI values close to those that would be obtained from SPARROW at least
within Pennsylvania. In our opinion, poorer agreement between model
and measurements outside Pennsylvania for both SPARROW and PSU is
likely due to less reliable measurements rather than poorer model per-
formance.

SHI presents a simple way of assessing stream health in the absence of
direct measurements for any stream basin, however small, or part thereof, in
Pennsylvania or within the Chesapeake Bay Basin. More to the point,
Equations 17.3 and 17.5 underscore the importance of ISA within a stream
basin in affecting stream health.

17.3.2  An Example

Let us consider an example of a seriously degraded watershed and the
influence of ISA and woodland on the SHI. A satellite (Landsat)-derived
image of an ISA analysis (Figure 17.5) for the year 2000 shows the Conestoga
Watershed, which is located in Lancaster County, Pennsylvania. ISA is
color-coded with red and orange generally pertaining to commercial struc-
tures (greater than 80%), and green and blue pertaining to residential areas

Key
B 00%-100%
80%-90%
70%-80%
50%-70%
30%-50%
B 20%-30%
B 10%-20%

FIGURE 17.5 (See color insert following page 292.)
Satellite-derived (Landsat) analysis of ISA for the Conestoga Watershed in eastern Pennsylva-
nia for the year 2000. Arrow denotes the town of Lancaster referred to in Figure 17.6.
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FIGURE 17.6 (See color insert following page 292.)
Photograph of the Conestoga River in the town of Lancaster, Pennsylvania (arrow in Figure
17.5) taken in the year 2004 near the location denoted by arrow in Figure 17.5.

(20%-70%). The average ISA for the watershed is 8.4% and the SHI derived
from Equations 17.3 through 17.5 is —6, the lowest possible category.
A photograph of the Conestoga in Lancaster (Figure 17.6; refer to arrow in
Figure 17.5), taken during 2004, shows a brown, muddy stream, clearly
deserving of its low SHI. Although the ISA is large for an average over a
sizeable watershed, it is not exceptionally so; the negative SHI is
also associated with a relatively low woodland cover (20%) over this
watershed.

17.4 Concluding Remarks

ISA is becoming an important parameter for water quality and surface
runoff. Mitigation strategies now involve modification of the landscape
and retaining water on developed property. Natural remedies consist of
planting trees and conducting the runoff via pipe or grassy swale into
vegetated recesses, which become ponds for a brief period after heavy
rain. Indeed, a characteristic of more recent housing developments is that
the developed property contains some form of storm water retention area (a
grassy recess, a swale, or a wetland). In existing commercial areas, the
planting of trees offers some reduction in storm water runoff, even if the
tree simply shadows an underlying impervious surface.

In the future, it would be beneficial for assessing surface runoff and water
quality (such as nutrient and sediment yields) to have a centralized database
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of land cover and ISA, and simple, widely accepted methodologies for
estimating the impact of existing and future development on local streams
anywhere in the United States. Such a facility must await not only the
availability and easy access of ISA and other land-use data, but also further
studies relating the land-cover parameters to the desired stream constitu-
ents for different types of terrain and climate regimes.

Large-scale databases of ISA are now being assembled at various institu-
tions, albeit at differing resolutions and from various sources for part or all
of the contiguous United States; for example, at approximately 30 m reso-
lution from Landsat imagery for the Chesapeake Bay Basin at the UMD
(Pittman, private communication), at Penn State for all of Pennsylvania for
the years 1986 and 2000 (PASDA, 2004), and for the entire United States at
1 km resolution from NOAA satellite data (Elvidge et al.,, 2004). Some
interesting statistics emerge from these analyses. The Pennsylvania analyses
showed that an average ISA over the state in 2000 was 2.89%, covering
approximately 1195 square miles and that total woodland cover was just
under 60%. Elvidge et al. (2004) found that the total ISA over the contiguous
USA is about the size of the state of Ohio.

On a smaller scale, developers and urban managers need to estimate the
change in ISA that occurs with building and road construction and to
estimate from changes in land use (including ISA) and the corresponding
change (increase) in surface runoff that would occur in response to devel-
opment. Enlightened communities now require that increased surface run-
off be retained on developed properties, a requirement that adds extra cost
to construction but, in the long run, is beneficial to the environment and to
residents of new developments.

Assessing the effects of ISA and the resulting runoff on stream water
quality is also important. At present, a simple regression model such as that
described here, although best applied to the limited regions for which it was
developed, can, at least, provide rough estimates of sediment and nutrient
yields and stream health for any stream basin within Pennsylvania or the
Chesapeake Bay Basin. This can be done with the aid of a simple Web
tool called SHARP, which allows the user to delineate with the cursor
the outline of a stream basin and instantly calculate yields of nitrogen,
phosphate, sediment, ISA, and the SHI within the area circumscribed
(http: /www.sharp.psu.edu). Perhaps the most surprising result was the
absence of a relationship between ISA and nitrogen, which alludes to the
importance of rural (agricultural) effects on this constituent. These relation-
ships as expressed in Equations 17.3 through 17.5 may change with time as
measures are taken to retain water on developed properties and to treat
surface runoff to streams in such a way as to minimize the washout
of contaminants to streams. They may also vary with region. More studies
are needed to determine similar relationships for other regions in this
country.
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18.1 Introduction

Impervious surface areas are characterized as surfaces that impede the
natural infiltration of water into the soil and accelerate rainfall runoff
processes and transport (USDA-SCS, 1986). Such surfaces are usually
a result of urbanization and development, and they include roads, build-
ings, and parking lots. Urbanization, which converts pervious surfaces to

369
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impervious surfaces, is a global trend because of the population and trans-
portation pressures. The impacts of this conversion on ecohydrological
settings have been studied by a number of researchers (e.g., Hirsch et al,,
1990; McCuen, 1998; Chin and Gregory, 2001; Rose and Peters, 2001; Booth
et al., 2002).

The runoff from impervious surfaces raises serious environmental con-
cerns because of its adverse impacts on the ecohydrology and water quality
of receiving waters, as indicated by the degraded water quality and bio-
diversity (USEPA, 1983; Whalen and Cullum, 1989; Steuer et al., 1997). The
impacts on the ecohydrology include the reduction of infiltration rate,
increase in surface runoff volume and peak discharge, decrease in soil
moisture compensation and groundwater recharge, decrease in flow dur-
ation and base flow drying up of wetlands, habitat degradation and frag-
mentation, and alteration of surface energy balance. As a result, the
ecological functions and economic values of a watershed are likely to be
greatly lowered. In addition, a combination of increased peak runoff vol-
umes and decreased duration and hydraulic efficiency (Chow et al., 1988)
results in more “‘erosive work” or hydraulic force acting on a stream
channel, increasing risks of stream bank/bed erosion and loadings of sedi-
ment and its associated constituents (e.g., phosphorus, nutrient, and pesti-
cide) (Driscoll, 1986; Chow et al., 1988).

Impervious surface areas also play an important role in determining the
water quality of the receiving waters. During dry seasons, dry deposition of
pollutants on such surfaces will be accelerated and washed out to the
nearby streams and lakes in the wet seasons. The temperature of streams
and rivers can rise in summer due to the heat conduction from the imper-
vious surfaces and water washed into these waters. Nonpoint pollution
sources associated with impervious surface areas are closely related to
land management practices, and are a function of land-use type and inten-
sity, such as the fraction of impervious surfaces, as well as climate condi-
tions, such as the frequency and magnitude of storm events.

The conversion of pervious surfaces (e.g., grassland, agriculture, forest,
and wetlands) to the corresponding impervious ones (e.g., roads, parking
lots, and buildings) can substantially change the partition of the incoming
solar radiation (USEPA, 1983). Solar radiation that reaches the Earth’s sur-
face is reflected, absorbed, and partitioned into sensible heat and latent heat
(i.e., the energy used for water evapotranspiration). A very small percentage
of the solar radiation is used in photosynthesis. Because of the absence of
vegetation and soil moisture, impervious surfaces tend to have a lowered
evapotranspiration. For pervious surfaces, the latent heat is used to evapo-
rate the water from the soil and meet the transpiration demand of plants.
However, the latent heat would be converted to the additional sensible heat
in the absence of soil moisture and vegetation, which in turn, probably
elevates the temperature and humidity of the ambient air above the imper-
vious surfaces.
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Further, the altered flow regime, water temperature, and elevated sedi-
ment and nutrient concentrations can have a substantial effect on aquatic
species recruitment, age structure, taxa richness, and taxonomic compo-
sition (Poff and Ward, 1989; Kelsch and Dekrey, 1998). Both the aquatic
and terrestrial habitats would be adversely impacted by the runoff and
constituents from the impervious surfaces. Studies have indicated declines
in biological integrity and habitat quality when the impervious fraction
reaches 10%—-20% (USEPA, 1983).

For a watershed, the characteristics of the overland runoff and its corres-
ponding flow hydrograph are closely related to the land cover and are
functions of imperviousness, defined as the ratio of the impervious areas
to the inclusive watershed area (Schueler, 1987). The imperviousness deter-
mines the hydrologic processes of infiltration and surface runoff. Increased
imperviousness results in less infiltration but larger surface runoff, and vice
versa. In addition, because water is no longer infiltrating into the soil, the
overland flow from impervious areas is mainly a result of infiltration
excess, a rainfall runoff mechanism occurring when rainfall intensity
exceeds the soil infiltration capacity. The infiltration excess runoff is also
called Hortonian flow after Horton (1942), who developed a conceptual
description of this runoff mechanism. This conceptual model has been
widely used to estimate the overland flow for watersheds with a low soil
infiltration capacity and urbanized areas where impervious surfaces hinder
infiltration of water and accelerate the occurrence and transport of over-
land flow. In practice, the conceptual model is usually implemented using
the Simple Method or the U.S. Department of Agriculture (USDA) Soil
Conservation Service (SCS) Curve Number (CN) method (USDA-SCS, 1972).

The objectives of this chapter are to (1) provide an overview of these two
methods; (2) introduce a method to quantify impervious areas based on
the remotely sensed data; and (3) illustrate how to determine the runoff
response to imperviousness in two watersheds with distinctly different
climate conditions and development levels.

18.2 Estimation of Hortonian Overland Flow

18.2.1 Characteristics of Impervious Areas

Compared with rural areas, impervious surfaces in urban areas have an
infiltration rate approaching zero. As a result, storm events tend to generate
runoff processes with a larger volume and peak discharge from impervious
areas than rural areas.

Impervious areas can be differentiated into two groups: (1) the area that is
hydraulically connected to the drainage system (also called effective imper-
vious area) and (2) the area that is not directly connected (USDA-SCS, 1986).
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For description purposes, these two groups are designated as Group I and
Group II impervious areas, respectively. The runoff generated from Group
IT impervious areas flows into their adjacent grass lands and is able to
infiltrate into the soil, whereas, the runoff from Group I impervious areas
is directly drained into the stream network by the drainage system. For the
purpose of modeling the runoff processes, commercial, industrial, transport-
ation, and institutional areas can be considered as Group I impervious areas.
On the other hand, residential areas can be considered as Group II imper-
vious areas.

18.2.2 Simple Method

The Simple Method was developed by Schueler (1987) to calculate pollutant
loadings in urban runoff. The runoff volume, R, in cubic meters is calculated as

R=0.01xPxP; xRy xA, (18.1)

where
P is the annual precipitation (cm)
P; is the fraction of rainfall events that produce runoff
R, is the mean runoff coefficient
A is the area of the watershed (ha)
R, is the proportion of rainfall converted to surface runoff and can be
estimated as

Ry = 0.05 + 0.009 x I, (18.2)

where [ is the percent imperviousness of the watershed.

P; represents effects of interception, depression storage, and infiltration.
Its value may be varied, depending on the topography, land use/cover, and
soil property of the watershed. An empirical value of 0.9 can be used
(Schueler, 1987) when the site-specific data are unavailable.

18.2.3 SCS-CN Method

The SCS-CN method was developed to provide a consistent basis for
estimating the amounts of runoff under varying land use and soil types
(USDA-SCS, 1972; Rallison and Miller, 1982). It is based on a hypothe-
sized (empirical) relation between runoff and infiltration, which can be
expressed as

= ) (18.3)

Nl

where
F is the actual retention of precipitation during a storm (cm)
S is the maximum potential retention (cm)
Q is the runoff (cm)
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P is the precipitation (cm)

I, (cm) is the initial rainfall abstraction, which represents the precipita-
tion intercepted by vegetation, other surfaces (e.g., roof), and depres-
sion areas

F can be calculated as

F=P-Q-1I,. (18.4)
An additional assumption is made that I, is proportional to S, that is,
I, =KxS. (18.5)
Substituting Equations 18.4 and 18.5 into Equation 18.3, we can get
_ (P-Kx9)
Q_PfoS+S’ (18.6)
S is related to a CN and is calculated as
2540
=—_———254. 18.7
S N 5 (18.7)

CN is a function of land uses and soil types (hydrologic soil group). Its value
can range from 1 to 100, but values of less than 35 and greater than 98 are
seldom justified for practical applications. In addition, CN varies with
antecedent soil moisture conditions. USDA-SCS (1972, 1985) developed the
CN values associated with antecedent soil moisture conditions I, II, and III,
which correspond to dry, average, and wet hydrologic conditions, respec-
tively. The values for other moisture conditions are usually computed as a
linear interpolation of that for those three conditions. Rallison and Miller
(1982) describe in detail how to determine the values for CN.

The proportional coefficient, K, varies from storm to storm and watershed
to watershed (Hawkins et al., 2002). For a watershed, K could have a value
ranging from 0.0005 to 0.4910, with a median value of 0.0476. Nonetheless,
a value of 0.2 was recommended by USDA-SCS (1985) and has been widely
used. Lim et al. (2006) assessed the effects of different K values on the
estimated runoff from a 70.5 km? Indiana watershed. This watershed has
experienced significant urbanization, with about 50% urbanized land area
in size in 1973 and about 68% in 1991. The study results indicated that the
long-term surface runoff prediction had the best accuracy when a K value of
0.2 was used.

For Group I impervious areas, a CN value of 98 is usually used (USDA-
SCS, 1986). However, two strategies are widely implemented to estimate the
runoff generated from Group II impervious areas. Strategy I is to partition
the impervious areas from their adjacent pervious areas and to apply
different CN values to these areas. With this regard, the CN for the imper-
vious areas has a value of 98, whereas, the CN for the pervious areas is
determined as shown in Rallison and Miller (1982).

In contract, Strategy Il is to calculate a composite curve number for Group
Il impervious areas using an equation developed by USDA-SCS (1986):



374 Remote Sensing of Impervious Surfaces

2ximp,,

CNp +imp, ; X (CNimp —CNp) when imp, , > 0.30,
(18.8)

CN.— {CNp +imp,_, X (CNimp —CNp) x (1 M) when imp, , < 0.30

where
CN. is the composite curve number
CNp, is the pervious curve number
CNimp is the impervious curve number and usually takes a value of 98
impyot is the fraction of the watershed area that is impervious (both
Group I and Group 1II)
impgycon is the fraction of the watershed area that is impervious (Group
IT only) '
The extra factor in Equation 18.8, (1 — %"“’;t) when impy; < 0.3 is a
value between 0 and 1 and it accounts for tﬁe reduction in the runoff.
Impgcon is calculated as

il’npdcon = il'nptot - il'npcoru (189)

where impcon is the fraction of the watershed area that is impervious (Group
I only).

Similarly, CN. also varies with antecedent soil moisture conditions. The
variation is because CN, is a function of the antecedent soil moisture
conditions. The values of CN,, for different soil moisture conditions are
determined using the aforementioned procedure for CN.

18.2.4 Hydrologic Models

Among the commonly used hydrologic models, the Hydrologic Simulation
Program—~Fortran (HSPF) uses Strategy I to simulate the runoff from Group
II impervious areas (Johanson et al., 1984), whereas, several USDA models,
including the Soil and Water Assessment Tool (SWAT) (Arnold et al., 1998),
the Agricultural Non-point Source Pollution Model (AGNPS) (Young
et al.,, 1989), and the Water Erosion Prediction Project (WEPP) (Laflen et al.,
1997), implement Strategy II. On the other hand, both Strategy I and Strategy
II are provided by the Generalized Watershed Loading Functions (GWLF)
(Haith et al., 1992), the Simulator for Water Resources in Rural Basins
(SWRRB) (Arnold et al., 1990), and the Environmental Policy Integrated
Climate (EPIC) (Mitchell et al., 1996).

Mandel et al. (1997) evaluated the performances of the Simple Method,
HSPF, GWLF, and EPIC on predicting the average annual runoff in three
gauged watersheds in which urban land uses were dominant, namely Rock
Creek in Maryland and the District of Columbia, Beaverdam Run in
Maryland, and Difficult Run in Virginia. The evaluation was conducted
by: (1) estimating the average annual runoff from the stream gauge records
using standard baseflow separation techniques; (2) predicting the runoff
using the EPIC and GWLF models with both Strategy I and Strategy II for
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Group II impervious areas and comparing the predicted runoff with the
runoff estimates from baseflow separation; and (3) predicting the runoff
using the Simple Method and the HSPF model and comparing the predicted
runoff with the runoff estimates from baseflow separation. The results
indicated a similar prediction performance, but the runoff predicted using
Strategy II tended to be smaller than that using Strategy 1.

In addition to these hydrologic models, the Storm Water Management
Model (SWMM), developed by the U.S. Environmental Protection Agency
(EPA), is also widely used for single event or long-term (continuous) simu-
lation of runoff quantity and quality from primarily urban areas (Rossman,
2005). The runoff component of SWMM operates on a collection of sub-
catchment areas, which receive precipitation and generate runoff and pollu-
tant loads. SWMM uses Strategy II to calculate the runoff from Group II
impervious areas. The routing portion of SWMM transports this runoff
through a system of pipes, channels, storage/treatment devices, pumps,
and regulators. SWMM tracks the quantity and quality of runoff generated
within each subcatchment and the flow rate, flow depth, and quality of
water in each pipe and channel during a simulation period comprising
multiple time steps.

While using different strategies to estimate the runoff from impervious
areas, both the Simple Method and the CN-based hydrologic models require
a common input of imperviousness and classifications of impervious areas.
In practice, this input can be derived from the remotely sensed data.

18.3 Impervious Surface Area Estimation

Estimating the imperviousness in urbanized watersheds is an important
task of water resources managers and planners. This information is needed
for designing flood control systems, canals, and drainage network struc-
tures, as discussed earlier, and is an important input of hydrologic models.
Various techniques have been developed and used to estimate the impervi-
ousness and delineate the extents of impervious surface areas. Among these
techniques, remote sensing-based techniques have proven to be superior to
the others for studying watersheds with a large size and mixed land uses,
because they are capable of quantifying impervious surfaces at a regional or
watershed spatial scale.

One of the commonly used remote sensing techniques is based on the
scaled normalized difference vegetation index (NDVI) (Price, 1987; Che
and Price, 1992; Carlson and Arthur, 2000). NDVI, reflects the temporal
change of the vegetation cover. It can be determined using remote sensing
images with different scenes and dates as

NDVI — NDVIoy

DVI, = 18.1
NDVI NDVlpigh — NDVIjq,, (18.10)
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where NDVIy,,,, and NDVly,;g, are values for bare soil and dense vegetation,
respectively.

Carlson and Ripley (1997) suggested a functional relationship between
the fractional vegetation cover (FVC) and NDVI,. FVC has a range between
0 and 1. This relationship can be expressed as

FVC ~ (NDVI)%. (18.11)

Ridd (1995) and Owen et al. (1998) developed an equation for estimating the
fractional impervious surface area (FIS) based on FVC. The equation can be
expressed as

FIS = 1 — FVC. (18.12)

FIS is equivalent to the imperviousness required by the Simple Method,
variable I in Equation 18.2. In addition to this composite parameter, the
extents of various land uses can be accurately delineated using this remote
sensing-based technique. In particular, this technique can distinguish
Group I impervious areas from Group II ones, depending on the resolution
of the images used. Further, supplemented by the ground-surveying data,
this technique has the capability to partition the impervious areas and their
adjacent pervious areas for Group Il impervious areas. As discussed earlier,
the resulting data on land-use classifications are common inputs of the
hydrologic models.

18.4 Example Studies on Runoff Response
to Impervious Surface

The studies were conducted in the Red River of the North Basin, located in
North Dakota and Northwestern Minnesota and the Simms Creek water-
shed, located in Florida. These two study areas have distinctly different
climate conditions.

18.4.1 Study Areas

The Red River of the North meanders about 880 km from its headwater in
South Dakota along the state border between North Dakota and Minnesota
to the international border between United States and Canada (Figure 18.1).
It has a very large sinuosity as indicated by a shorter line distance of 456 km,
and it drains 100,480 km? U.S. lands. In the U.S. portion, about one-third of
the population lives in the two North Dakota-Minnesota metropolitan
cities, namely Grand Forks-East Grand Forks and Fargo-Moorhead. These
two cities are experiencing urbanization and noticeable changes on land use
in the recent years. The climate of the Red River of the North basin is
continental, with a dry/subhumid condition in the North Dakota side to a
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FIGURE 18.1
Map showing the locations and boundaries of the study watersheds.

subhumid/humid condition in the Minnesota side. The average annual
precipitation varies from about 457 mm at the northwestern areas of the
basin to about 686 mm at the southeastern portion. About 75% of the annual
precipitation falls in the months between April and September. The average
annual temperatures vary from 2.8°C to 6.1°C, and the monthly temperat-
ures have a wider range, from —18.3°C in January to 21.7°C in July.

The study was conducted using the Landsat and meteorological data
spanning the years 1974-2002 (Melesse, 2004) in the Fargo-Moorhead and
Grand Forks-East Grand Forks metropolitan areas (Figure 18.1). The land-
use/cover changes were analyzed using the Landsat imagery by making
comparisons between the study years. In addition, the extents of impervious
surface areas were delineated and the imperviousness was estimated.

In contrast, the Simms Creek watershed, located in the Etonia subbasin,
Florida (Figure 18.1), has a drainage area of about 114 km?® The Simms
Creek flows eastward along with the Rice and Etonia Creeks to join the
St. Johns River. The Simms Creek watershed is mainly covered with forest,
wetlands, agriculture, and urban areas. It has a moderate topographic relief,
with elevations ranging from 3.6 to 72 m above mean sea level. The average
annual rainfall is about 142 cm, with ~60% of rainfall occurring in the
months between June and September. The rainfall is affected by the frontal
and convective climate. The frontal precipitation usually occurs when a cold
front from the north results in lifting of air masses and can have a long
duration but a small intensity. It usually occurs during the dry season,
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that is, the months between November and March. In contrast, the convec-
tive rainfall, which usually occurs during the wet season, that is, in the
months between May and September, is characterized by a short duration
but fairly high rainfall intensity.

The average temperature of the Simms Creek watershed is 22°C, with the
minimum temperature of 14.8°C in February and a maximum temperature
of 29°C in June. The annual average potential evapotranspiration is esti-
mated to be 116 cm. The dominant soils of the Simms Creek watershed are
Myakka and Tavares, which constitute more than 60% of the watershed area
in size. These soils have a very low permeability and thus a high runoff
potential and are classified as Hydrologic Soil Group D. Melesse and Shih
(2002) showed that infiltration excess rather than saturation excess was the
dominant runoff generation mechanism for this watershed.

18.4.2 Red River of the North Basin

18.4.2.1 Land-Cover Change Analysis

Figure 18.2 shows the land-cover changes determined using the Landsat
images that were taken from 1974 to 2001. The analysis used the land-
use/land-cover classification system developed by Anderson (1976). The
details on the techniques used to estimate the land-cover classes and
extents can be found in Melesse (2004). The results indicated that the
urban areas were increased by 19% from 1974 t01984 and 19% from 1974
to 1992. A larger percent increase of 54% from 1974 to 2001 indicates an
intensive urbanization since 1992. Further, the results indicated that more
than 50% of the study area was covered by cropland and forest and that the
rangeland acreage was decreased by 29% between 1974 and 2001.

Area (%)
0 10 20 30 40 50 60

<& 1974 1984

&
FIGURE 18.2 &\é‘ 1992 2001

Land-cover analysis results %
from Landsat images for the &
Red River of the North Basin. N
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18.4.2.2 Imperviousness Dynamics

Using Equation 18.12, the FIS or imperviousness was estimated and
mapped for the portions of the basin classified as urban areas. Figure 18.3
shows the spatiotemporal dynamics of the FIS for the Grand Forks-East
Grand Forks and Fargo-Moorhead metropolitan areas. It can be seen that the
impervious areas have been noticeably increasing, which was probably
caused by the rapid urbanization and development activities along the
Red River Valley in recent years. The increased imperviousness was likely
to alter the storm runoff processes in the basin. For example, the change in
FIS between 1992 and 2001 than that between 1974 and 1984 corresponds to

Grand Forks Grand Forks N
1974 1984
Grand Forks Grand Forks
1992 2001
Fargo Fargo
1974 1984
Fargo Fargo
1992 2001
FIS
1.0
0.5
km

0153 6 9 12

FIGURE 18.3
Impervious surface area analysis results for the urbanized areas in the Red River of the North
Basin. (From Melesse, A.M., Phys. Chem. Earth, 29, 795, 2004. With permission.)
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Precipitation and runoff for the period from 1974 to 2002 in the Red River of the North Basin.
(From Melesse, A.M., Phys. Chem. Earth, 29, 795, 2004. With permission.)

a consistent pattern that higher percentage of the precipitation during the
period from 1992 to 2001 was converted into the runoff (Figure 18.4).

18.4.2.3 Runoff Response Analysis

The data on monthly precipitation (including both rainfall and snowfall)
and runoff depth from 1974 to 2002 are shown in Figure 18.4. The plot
indicates an increase in precipitation and the corresponding discharge of
the river in the years 1993-2002. The increase in precipitation was driven by
the regional weather conditions, which produced higher volumes of rainfall
and snowfall. In addition, the plot indicates an approximately consistent
increase in precipitation and runoff from 1974 to 2002.

About 40% of the study years after 1993 had a ratio of runoff to precipi-
tation larger than 0.15, compared with 10.5% of the years between 1974 and
1992. Further, after 1993, all years had a ratio greater than 0.10, compared
with 35% of the years between 1974 and 1992. This indicates that the runoff
response of the basin has been increased noticeably after 1993, with greater
than 10% of the precipitation converted to the runoff.

18.4.3 Simms Creek Watershed

18.4.3.1 Imperviousness Dynamics

The analysis using the Landsat images taken for the years 1984 and 2000
indicated a noticeable increase in the impervious areas in the Simms Creek
watershed (Figure 18.5). This increase consists of both an increased FIS and
expanded extents of the impervious areas. Compared with 1984, more areas
in 2000 had an FIS value of 1, that is, 100% imperviousness, indicating an
intense land-use alteration. Further, as shown in Figure 18.5, these areas are
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FIGURE 18.5
Impervious surface areas in the Simms Creek watershed in (a) 1984 and (b) 2000. (From
Melesse, A.M., Graham, W.D., and Jordan, ].D., J. Spatial Hydrol., 3, 2003. With permission.)

scattered across the watershed, but mostly distributed in the areas adjacent
to the stream channels.

18.4.3.2 Hydrograph Comparison

In order to detect effects of land-use changes on the hydrograph character-
istics, namely shape, peak discharge, and times to peak and recession end, an
arbitrary rainfall intensity of 12 mm/h with a 4 h duration was simulated.
Because the major purpose of this analysis was to assess the effects of the
land-use changes on the hydrograph characteristics, the excess rainfall was
computed using the SCS-CN method and taken as the sole variable. Using
the Spatially Distributed Direct Hydrograph (SDDH) method (Melesse
and Graham, 2004), hydrographs were generated using the SCS-CN number
method for the years 1984, 1990, 1995, and 2000. In addition, the
analysis varied the Manning’s roughness coefficients in accordance with
the determined land-cover distribution. Manning’s roughness coefficient is
aland-cover-dependent coefficient in Manning’s formula for estimating open
channel flow velocity (Chow, 1959). It is a function of friction along the flow in
open channel flow. Flow over high-friction materials such as trees and shrubs
has higher Manning’s coefficient than low-friction covers such as grass, sand,
and gravel. In this study, Manning’s coefficient was used from published
materials (Brater and King, 1976; Montes, 1998) for each land-cover class.
The results indicated that time to peak was 37, 31, 29, and 31 h in 1984,
1990, 1995, and 2000, respectively (Table 18.1). The peak discharges for
1984, 1990, 1995, and 2000 were predicted to be 0.83, 0.94, 1.04, and
0.98 m®/s, respectively. However, these 4 years were predicted to have a
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TABLE 18.1
Summary Statistics of the Predicted Hydrographs

Peak Flow Runoff
Year (m3/s) Time to Peak (h) Volume (10° m®)
1984 0.83 37 152.81
1990 0.94 31 153.69
1995 1.04 29 153.98
2000 0.98 31 153.59

Source: From Melesse, A.M., Graham, W.D., and Jordan, J.D., |. Spatial
Hydrol., 3, 2003. With permission.

similar total runoff volume (Table 18.1). The land cover for 1990 and 1995 was
determined using the digital orthophotos, whereas, the land cover for 1984 and
2000 was derived from the Landsat images. Thus, fair comparisons can be
made between the results for 1990 and 1995 and that for 1984 and 2000, as the
procedures and data sources are identical. On the other hand, comparisons of
the results for 1990 and 1995 with that for 1984 and 2000 would be biased
because of the incomparability of the analysis procedures and data sources.
The comparison of the predicted hydrographs indicated an increase in
peak discharge by 6.5% and reduction in time to peak by 10.6% in 1995 from
that in 1990 (Figure 18.6). This was probably a result of the increased urban
built-up areas in 1995, which increased the runoff and reduced the flow
travel time (Melesse et al., 2003). This is one typical effect of urbanization on
the shape of the hydrograph and time to peak (Chow et al., 1988). Similarly,
increased urban built-up areas in 2000 from that in 1984 increased peak
discharge by 16.2% and reduced time to peak by 18.1% (Figure 18.6).

18.5 Summary

This chapter elaborated the effects of increased imperviousness on
the ecohydrology and water quality of receiving water bodies in
urbanized watersheds. It provided an overview of the Simple Method and
SCS-CN-based hydrologic models, which are widely used to predict the
effects of urbanization on precipitation runoff processes. In addition, this
chapter introduced a remote sensing-based technique for determining the
imperviousness and extents of impervious areas in the watershed. Further,
example studies were used to demonstrate the runoff responses to the
increased impervious areas in the Red River of the North Basin and
Simms Creek watershed, which have distinctly different climate conditions.

In contrast with pervious surfaces, impervious surfaces tend to absorb
more incoming solar radiation, that is, the energy of the sensible heat
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Predicted flow hydrographs using a synthetic rainfall event with an intensity of 12 mm/h for
(a) 1990 and 1995 and (b) 1984 and 2000. (From Melesse, A.M., Graham, W.D., and Jordan, J.D.,
J. Spatial Hydrol., 3, 2003. With permission.)

reduces the latent heat, which is likely to make the surface and ambient
atmosphere warmer. This effect of impervious surfaces is due to the absence
of vegetation and soil moisture. Accordingly, the warmer surface would
provide a great opportunity to transfer more heat energy to the contacting
runoff and thus to increase water temperatures of streams and other water
bodies. In addition, the altered flow regime and increased sediment and its
associated constituents are likely to have an adverse impact on aquatic
ecosystems, leading to degraded water quality and biodiversity (Price and
Waddington, 2000).
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19.1 Introduction

Human activity in the shape of land-cover and land-use change, in particu-
lar urbanization, is often cited in the literature as a major factor contributing
to a staggering loss in ecological biodiversity. So much so, that The National
Academy of Sciences has noted the ecological impact of land-cover and
land-use change (NRC, 2001). Urbanization is persistent in the sense that
it is a more lasting type of land-use change than are other types of habitat
loss; moreover, it continues to expand geographically with resulting effects
on the environment (Benfield et al., 1999). In the United States, the data on
species loss reveal themselves in the increasing number of plants and
animals added to the endangered species list. As an indicator, however, it
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is misleading and frequently understated, as knowledge of extinctions along
with inventory lists are better for some species than others. In the context of
aquatic environments, for example, the knowledge base for freshwater fish
and bivalves* is quite extensive (USEPA, 2002; Nilsson et al., 2003) while
those for other water settings (i.e., bed landscapes of water bodies), which
harbor abundant biota, are sorely lacking.

There is a plethora of landscape indicators that are used in determining
the biological integrity of ecosystems and in the assessment of the biological
diversity of aquatic flora and fauna (Gergel et al., 2002). Of note, however, is
one particular indicator approach—that of total impervious surface area
(ISA)—that among other uses has been applied in the study of fish, insect,
and invertebrate diversity (Klein, 1979; Schueler and Galli, 1992). What
follows in this chapter is a background review of ISA and aquatic ecosys-
tems, followed by a detailed look at a case study, and in particular the
techniques, that was first published by Gillies et al. (2003) computing and
examining ISA growth and expansion with associated subsequent fresh
water mussel loss and extinctions in the Peachtree watershed in Atlanta.
Lastly, some more recent studies on ISA and aquatic ecosystems are pre-
sented and discussed, as they exemplify further complexities that should be
considered.

19.2 Background

The generalized thinking that one reads in the literature presently with
respect to ISA and aquatic ecosystems is that by replacing pervious surfaces
with artificial (i.e., impervious) ones, any precipitation that falls will be
summarily transported to streams and rivers. While, in the process of
transfer, the flowing water picks up any detritus that is part of the urban
fabric, thus degrading the water body properties and aquatic biota through
physical (increased stream flow with resultant sediment transport), chem-
ical (pollutants), and biological (bacteria) changes. Such thinking is exem-
plified by the now ubiquitous observation of a negative correlation between
stream condition and ISA (Beach, 2001; Gergel et al.,, 2002) and that
originally described by Klein (1979) but in terms of fish species diversity
as shown in Figure 19.1.

The imposition of ISA on aquatic ecosystems is harder to define than
that of terrestrial ecosystems. This is due primarily to a lack of inventories
for aquatic species, especially for bottom sediments where arguably more
abundant biota exist—mnot surprising given the abundance of species
that exist in disparate aquatic environments (e.g., lakes, streams, ponds,
marshes, ground waters, and wetlands); for a good account, see Palmer

*Bivalves are mollusks belonging to the class Bivalvia. The class has 30,000 species including
mussels.
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FIGURE 19.1

Montgomery/Prince George’s County fish collections vs. watershed imperviousness. Note that
the line of regression crosses the species diversity index of 2.00, which separates the good to fair
range at the 12% imperviousness point. (From Klein, R.D., Water Resour. Bull., 15 (4), 948, 1979.
With permission.)

et al. (1997) for estimations as to the extent of biota (i.e., aquatic inverte-
brates, algae, protozoa, and bacteria) that exist globally. It is therefore
understandable that information on aquatic species extinction is sparse.
However, this is only one facet of the problem since lack of knowledge at
an inventory level is similarly compounded by lack of understanding of the
biological linkages that exist between the flora and fauna aquatic ecosys-
tems. Palmer et al. (2000) describe such a state of affairs.

19.3 A Case Study of ISA and Aquatic Fauna—The Line
Creek Watershed, Atlanta, Georgia, United States

19.3.1 Introduction

The case study described here serves two purposes. The first is a stepwise
description of ISA derivation from first-order (integer digital numbers)
satellite data. The second is to show how the ISA data field was manipu-
lated in a fashion that permitted its application towards an assessment of
the impacts on an aquatic ecosystem that had been severely disturbed due
to rapid urbanization over a period of time.
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Before describing steps in the process of ISA computation from derived
fractional vegetation cover, it is worthwhile to set out the assumptions
inherent in its derivation. Quoting from Gillies et al. (2003), “The theory,
adopted behind the satellite determination of ISA is based upon the obser-
vation (Jennings and Jarnagin, 2000; Ridd, 1995; Klein, 1979; Leopold, 1973)
that ISA is inversely related to vegetation cover in urban areas, i.e., non-
vegetated surfaces in urban areas are almost entirely impervious in North
American cities. In making this assumption it is also assumed that no
impervious surfaces reside in areas that are not developed.” Moreover,
when it comes to the health of ecological systems and associated biodiver-
sity of species that comprise them, the fractional vegetation cover approach
to calculating ISA has, arguably, more direct meaning from a biophysical
point of view than other satellite- or GIS-based methods.

19.3.2 Derivation Techniques and Algorithms to Determine
ISA Delineated by Watershed

A technique for determining ISA from satellite data is described in detail with
reference to the Landsat 7 platform (ETM+ data). The methods are ubiqui-
tous in the sense that they are essentially the same for TM and MSS data—all
that is required is the appropriate technical documentation. For Landsat
ETM+ data, the relevant information is found in the Science Data Users
Handbook (http:/ltpwww.gsfc.nasa.gov/IAS/handbook/handbook.htmls/
chapter11/chapter11.html/). Moreover, the rationale and steps involved are
germane to other platforms (e.g., ASTER, MODIS) although, for certain
platforms, the fractional vegetation cover may constitute one of the derived
data products.

Step 1 Digital Numbers to Radiance

The so-called media output for Landsat 7 (i.e., the 1G product) supplies
pixel data for an image scene as digital numbers (DN—expressed as inte-
gers). The parameters required are generically spectral reflectance, which
necessitates a series of steps referred to as calibration. The first step in the
calibration procedure is to render the data to units of radiance for which
Equation 19.1 is the starting point:

Ly = Gain x QCAL + Offset, (19.1)

where
L, is the spectral radiance in a spectral interval /band (\) as Wm st ' pm~
at the sensor’s aperture.

1

The gain (rescaled gain) and offset (rescaled bias) are expressed in
WmZsr ' um ! as

LMAX, — LMIN,
QCALMAX — QCALMIN”

Gain = (19.2)
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and
Offset = LMIN,, (19.3)

and QCAL (unitless) is the quantized calibrated pixel value in DN, which is
given as

QCAL = QCAL — QCALMIN (0 for NLAPS product, otherwise 1). (19.4)

The other variables represented are defined accordingly as follows:

LMIN, and LMAX, (both unitless) are the spectral radiances that are
scaled to QCALMIN and QCALMAX, respectively. These values change
slowly over time and are supplied by the responsible agencies; for example,
for Landsat 7, as mentioned earlier, they are found in the Science Data Users
Handbook.

Finally, QCALMIN and QCALMAX (both unitless) are, respectively, the
minimum and maximum quantized calibrated pixel values (corresponding
to LMIN, and LMAX,) in DN (generally 0 and 255).

Step 2 Radiance to Apparent Reflectance
The following formula is applied to compute apparent reflectance:

’TFL)\dz
pa = E

= (19.5)
sun, €08 05

where
pa is the apparent reflectance (unitless)*
L, is the spectral interval radiance at the sensor’s aperture
d is the Earth-Sun distance in astronomical units (obtained from a
nautical handbook or interpolated from tables—usually supplied in
the agency’s technical notes)'
Equn, is the mean solar exoatmospheric irradiance for the spectral
interval (tabulated by the agency) (Wm 2 pm ™)
05 is the solar zenith angle in degrees

Step 3 Fractional Vegetation Cover
To obtain fractional vegetation cover, first compute the normalized differ-
ence vegetation index (NDVI). The NDVI is defined as

puir - par

NDVI = }
Pa, T Pa,

(19.6)

*You may find this referred to as planetary reflectance or planetary albedo in remote sensing
science literature.

Some simply default this to one.

!Two things to note here: (1) The solar elevation angle is what is generally supplied in the
header file that accompanies the image data so as to compute the zenith (the complementary
angle, one computes 90—6,). (2) Most trigonometric functions supplied in image-processing
packages default units to radians.
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The NDVI is calculated from the “reflectance” p, in the red band (typically
0.6-0.7 um) and the reflectance p, in the near-infrared band (typically
0.8-1.0 pm). The notation used here is important as it indicates apparent
reflectance; there is often confusion on this front. In theory, NDVI should be
calculated using surface reflectance values, as it is this NDVI that is directly
correlated with the amount of photosynthetically active radiation (PAR).
Moreover, the apparent reflectances contain an atmospheric scattering com-
ponent that can vary considerably depending on the atmospheric properties
at the time of measurement. To account for any atmospheric addition or
subtraction to p, and p, requires a so-called atmospheric correction, the
details of which are not necessary here but generally involve the use of
a radiative transfer model like MODTRAN. However, a straightforward
atmospheric correction (Carlson and Ripley, 1997) is accomplished simply
by normalizing the NDVI with respect to a bare soil (NDVI,) and full vege-
tation (NDVI;) NDVI reference points that correspond to a bare soil pixel and
a completely vegetated pixel, as follows:

_ NDVI - NDVI,

N* = .
NDVI; — NDVI,

(19.7)

There are various ways (e.g., Gillies and Carlson, 1995) to determine NDVI,
and NDVI,, which vary in complexity; however, using the tails of the NDVI
frequency distribution for the image scene is a good first approximation.

There are some subtleties to the computation of NDVI of which one should
be cognizant. Theoretically, the index can range from —1 to 1; in particular,
negative values of NDVI occur when p, is greater than p, and usually crop
up in measurements of rather low reflectance in both bands. Such conditions
will manifest when the image scene contains water “’contamination’” such as
clouds, water bodies, and snow, or if the soil is particularly wet, each of which
may fully or partially represent a pixel. To facilitate analysis, negative values
of NDVI should be filtered from the image scene.

The fractional vegetation cover (Fr), the derivation of which is detailed in
Gillies et al. (1997), is subsequently calculated as

Fr = N*2. (19.8)

Step 4 Image Scene Classification

The corresponding piece that is coupled with the fractional vegetation cover
(to infer ISA) is the knowledge as to which pixels are urban/built-up, that is,
those that are developed as artificial impervious surfaces. The derivation of
““developed” pixels through the process of image classification is arguably
the most technically difficult and time-consuming part of the process. There
are numerous classification techniques detailed in the literature. It is depend-
ent upon the user’s knowledge and skill-set to apply any of the various
classification procedures (i.e., unsupervised, supervised, hybrid, fuzzy)
that many of the current image-processing systems now make available.
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Image-processing systems also evaluate the classification accuracy of each
cover type, which is valuable information for assessing the success or failure
of the classification scheme and whether further refinement might be con-
sidered necessary.

Step 5 ISA
A single new field of ISA (Carlson and Arthur, 2000) is generated by
applying the following formulation:

where the subscript DEV denotes that ISA is computed for all pixels classi-
fied as developed (i.e., urban/suburban).* Implicitly, all other pixels are
excluded because they are other land-use/cover categories (e.g., water,
vegetation types, etc.).

Equation 19.9 is evaluated heuristically in an image-processing system
that contains a programmatic module (e.g., in Imagine, it is called the spatial
modeler). Hence, the fractional vegetation cover digital layer, computed
from basic DN via Equations 19.1 through 19.8, is coupled with the thematic
classification layer to determine ISA for those pixels that are defined as
““developed.”

19.3.2.1 Watershed Delineation

In studies that pertain to the consequence of ISA on aquatic systems, it is
often desirable to delineate a particular watershed or split a watershed into
its subdivisions. Several software packages are available to demarcate a
watershed by specifying certain criteria within a digital elevation model
(DEM). At a superficial level the results from each are, or can be made,
similar. Of those out there, examples include TauDEM (http://hydrology.
neng.usu.edu/taudem/), ArcHydro (http://support.esri.com/index.cfm?
fa = downloads.dataModels.filtered Gateway&dmid =15), and RiverTools
(http: /www.rivertools.com/). In each case, one has to make good choices
in activities like picking the threshold for delineating channels. However,
TauDEM does suffer from memory limitation problems limiting the DEM
size that can be handled relative to ArcHydro and RiverTools, both of which
have commercial support to implement efficient memory management.
Depending on the application area, one might consider using preexist-
ing results that have been quality controlled, for example, NHDPlus
(http: /www .horizon-systems.com/nhdplus/) or national elevation dataset
derivatives (http://edna.usgs.gov/). One further digital data field that
is particularly useful is the watershed digital hydrography. The digital
hydrography can be overlaid to visually georeference the DEM of the water-
shed, identifing subwatersheds from which one can set down reference
points to start the process of channel delineation.

*Depends on the specifics of your classification.
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19.3.2.2 Data Masking

A data mask is a simulated construct that allows one to filter redundant/
unwanted data. In the context of image processing, an image consisting of
pixels is stored as a raster file, a grid of x and y coordinates and is illumin-
ated as such on a display space. In the case of a delineated watershed of ISA
(often referred to as an area of interest (AQI) in image-processing parlance),
the raster file contains data that are not actual ISA data but values that
constitute the raster grid. One might think of it in this way. Consider the fact
that ISA values ranging from 0 to 1 (representing fully vegetated and 100%
ISA, respectively) would appear on the display as black (0) and bright white
(1). However, if the system stores those values of the grid outside the AOI as
zero, a bulk export of the data for statistical analysis would be totally
misrepresentative. To remove the extraneous zeroes from the file, a mask
is created that assigns a unique value for the AOI pixels and for the rest of
the grid, which when run is used to export only those ISA values within the
AOL Hence, true values of zero (those fully vegetated) are retained for
subsequent analysis. One has to construct an algorithm to perform this
task. Figure 19.2 gives a visual impression of the data one wishes to export
to an ASCII file—in this case, only the ISA data associated with the sub-
watershed delineated within the AOL

FIGURE 19.2

Delineated watershed (gray shad-
ing) for Line Creek (derived ISA).
The Peachtree watershed (AOI)
is denoted by the dotted line.
To extract only the data associ-
ated with Line Creek subwa-
tershed requires the use of a
data mask. (From Gillies, R.R.
et al., Remote Sensing Environ., 86,
441, 2003. Copyright 2003. With
permission from Elsevier.)
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19.3.3 Peachtree Watershed ISA and Freshwater Mussel Diversity

As mentioned previously, the knowledge base for bivalves is relatively
extensive. In the case of the Peachtree Watershed, the mussel data records
were in part surveyed but also collated from historical records (Brim Box and
Williams, 2000; Gillies, et al. 2003). Figure 19.3 indicates the survey sites that
lie in the Peachtree watershed. There are three drainages to the Peachtree
watershed—namely, Line Creek (where sites H, G, J, A, B, N, and E lie), Flat
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FIGURE 19.3

Site map showing study sites (A through L) on the Line and Whitewater Creeks, near Atlanta,
Georgia. Sites O, further downstream, and P, to the east of Peachtree City, are located outside

this map. (From Gillies, R.R. et al., Remote Sensing Environ., 86, 441, 2003. Copyright 2003. With
permission from Elsevier.)
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Creek (water source: Lake Peachtree), and Whitewater (where sites I, M, D,
and C lie). Sites F and K reside downstream from the confluence of Line and
Flat Creeks and L, O, and P are sites where all drainages contribute. In terms
of the ISA analysis, three drainages exist and were delineated as and named
Line, Line plus Flat, and Whitewater Creeks. The Line Creek ISA breakout of
the subwatershed is shown in Figure 19.2. All three subwatersheds along with
the time series of ISA (using three Landsat images (1979 MSS, 1987 TM, and
1997 ETM+) for the entire Peachtree watershed were generated following the
procedures outlined earlier. As a point of clarification, high- and low-density
urban classes (step 4) were created through a hybrid classification procedure
(Yang and Lo, 2002).

Again quoting from Gillies et al. (2003), ““We were interested in examining
the entire Peachtree watershed in terms of overall urban development and
ecological impact. In addition, the sub-watersheds of the combined Line/Flat
and Whitewater creeks might offer further insights from two perspectives:
First, the urban development around the Line plus Flat sub-watersheds as
compared to the Whitewater Creek watershed is markedly different in extent
and magnitude, so we might realistically find differences in aquatic decline
between the two sub-watersheds. Second, the confluence of Line and Flat
creeks (where study sites F and K reside) is where we might reasonably
expect to observe a greater ecological impact due to component flows from
these two creeks (Morisawa and LaFlure, 1979).”

The results of the ISA derivation are shown in the following two figures.
Figure 19.4 is the ISA calculated for the entire drainage area and expressed

Impervious cover is integrative

Relationship between % imperviousness and water quality
80

70
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40

Degraded
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10

Watershed imperviousness (%)

Protected

Stream degradation

FIGURE 19.4

Entire Peachtree watershed expressed as a gradation of gray associated with degree of ISA. The
shades correspond to stream quality conditions from unpolluted and natural (<10%) to pol-
luted (10%—20%) and degraded (>25%). Zero ISA (100% vegetation) appears as black in this
representation. (From Gillies, R.R. et al., Remote Sensing Environ., 86, 441, 2003. Copyright 2003.
With permission from Elsevier; Prisloe, S. et al., in Proceedings of the American Society of
Photogrammetry and Remote Sensing, St. Louis, MO, April 23-27, 2001. With permission.)
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in terms of a stream quality classification system as originally proposed by
Schueler (1994) and later modified by Arnold and Gibbons (1996). It divides
ISA into three groupings, as indicated, that serve as general guidelines for
stream quality: less than 10%, 10% to 25%, and above 25%.

Figure 19.5 is the time series equivalent of Figure 19.4 and shows ISA
expansion throughout the years. The color-coding corresponds to the
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FIGURE 19.5 (See color insert following page 292.)

ISA (0-1 representing 0%-100%) maps for the entire Peachtree Watershed for the years 1979,
1987, and 1997. Color-coding represents the degree of ecological impact, as outlined by Schueler
(1994). Overlaid in blue is the digital hydrography of the Peachtree watershed. (From Gillies,
RR. et al., Remote Sensing Environ., 86, 441, 2003. Copyright 2003. With permission from
Elsevier.)
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protected (green zone), impacted (orange zone), and degraded (red zone)
categories of Figure 19.4.

The information enclosed in Figure 19.5 indicates that a remarkable
degree of urbanization has occurred over the 18 year period and, in
particular, urban growth in the vicinity of Peachtree City. As noted
by Gillies et al. (2003), industrial, commercial, and shopping center com-
plexes (ICS) along with residential development mark the urbanization in
the city’s vicinity. In particular, what is very clear is the difference in type
and dominance of urbanization in and around the Line and the Flat as
compared with the Whitewater basin. In terms of actual numbers, the
indication is that the Line and the Flat subwatersheds exhibited a consider-
ably higher percentage of ICS complexes than that in Whitewater where
there was no observable increase in high ISA values related to ICS com-
plexes from 1987 to 1997. These findings were the result of a statistical
analysis* that was performed on the exported ASCII data, the details of
which can be found in Gillies et al. (2003) and from which, as an example,
Figure 19.6 is taken. Figure 19.6, as stated in Gillies et al. (2003), ... shows
percentiles (85th to 100th for 1979 and 1987, and 70th to 100th in 1997; in

1.04 —_— — —_— e e ——
100th 100th 100th
T T —" ~ -
0.8 4 95th . R .
[ — 95th \./951h
90th -
< T — \ . \ .
) — 85th . - * 7 90th . « —%0th
5 0.6- L N
® : s -85
g - 85t " -—"8B0t
8 044 . e \ .
s " « — 75th
a8 /
. 70th
0.2 /
0.0 1 —_— —_— e — PR
1979 1979 1979 1979 1987 1987 1987 1987 1997 1997 1997 1997
Line Line/flat Whitewater LFW Line Line/flat Whitewater LFW Line Line/flat Whitewater LFW
creek creek creek Watershed creek creek creek watershed creek creek creek watershed
FIGURE 19.6

Percentiles of ISA percentages (0-1 representing 0%-100%), based on all pixels, for the different
watersheds (Line, Line/Flat (indicating Line plus Flat), Whitewater Creeks, and the entire
drainage area representing Line Creek (LFW)) for the years 1979, 1987, and 1997. (From Gillies,
R.R. etal., Remote Sensing Environ., 86,441,2003. Copyright 2003. With permission from Elsevier.)

*S-Plus (Mathsoft, 2000) Version 5.0 Release 3.0 for SunSPARC, SunOS 5.5.
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steps of 5) of ISA percentage, based on all pixels,” from which Gillies et al.
(2003) note that ... the Whitewater sub-watershed has far less than 10% of
its ISA values above 70% (in fact, the highest 10% of the ISA values are in the
range 63% to 100%). For the Line Creek sub-watershed and the Line/Flat
Creek (Line plus Flat) sub-watersheds, the highest 10% of the ISA values are
above 68% and 71%, respectively, indicating a considerably higher percent-
age of ICS complexes for the latter sub-watersheds than for Whitewater.”
The indication of growth in ICS complexes is concomitant with growth in
residential areas and is reported as such in Gillies et al. (2003).

The nature of the mussel data (Table 19.1) meant that only empirical
evidence, in terms of aquatic species richness, was available to assess the
relative impact of changes in ISA. Quoting some summary statistics from
Gillies et al. (2003): ““Two things are apparent when looking at the four sites
on Line Creek. (1) Downstream sites historically contained more species than
the upstream sites (e.g., K versus J). (2) There was a progression of species
loss going from upstream to downstream sites. For example, site G on Line
Creek (well upstream) did not lose any mussel species. Progressing down-
stream, sites J, K, and L each lost over 50% of their mussel species and the loss
was progressively greater going downstream. For example, from the 10
species that were present at site ] in 1995 or before (i.e., in 1985 and 1992 to
be specific), only 5 were observed in 1995, which relates to a loss of 50%. At
site K, 54% of species disappeared over time. Site L, which historically had
the most species of any site, experienced the greatest loss. Eleven of 15
species (73%) that were initially present at that site had disappeared by
1999.” On the other hand, site H along with site G (as already noted), both
well upstream of the main ISA growth areas, had no major species losses.

Further, “Two of the six sites surveyed over multiple years occurred
in the Whitewater Creek sub-watershed. Species losses at those sites were
less than those on Line Creek. For example, site C lost no mussel
species between 1995 and 1997 and site D lost 30%. It is possible that species
losses at Site D were due, in part, to the reservoir directly above that site.
Declines in mussel species below dams in other drainages have been well
documented” (e.g., Bates, 1962; Williams et al., 1992).

19.4 Further Studies of ISA and Aquatic Ecology

A further refinement to ISA (the total ISA defined for a catchments’ area) is
the effective ISA, although first mentioned back in the late 90s (Booth and
Jackson, 1997), which is now being scrutinized as a more insightful land-
scape indicator. The effective ISA is defined as those impervious surfaces
with direct hydraulic connection to the downstream drainage system. In a
sense, effective ISA is a more esoteric variable since it is not directly meas-
ured and is simply a crude surrogate of ISA (Wang et al., 2001; Stepenuck
et al.,, 2002)—in other words, no direct information on actual drainage
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connection is contained within the variable. It is simply inferred through
other means, usually for a given land use. However, Walsh et al. (2004) have
taken a more exacting approach to determining effective ISA and have
applied it within the Melbourne metropolitan area, Victoria, Australia. The
result of this study and an analogous study (Walsh, 2004; Walsh et al., 2004,
respectively) indicated that drainage connection is significant and was, in
point of fact, the strongest independent correlate (Walsh, 2004). Walsh’s
conclusion is perhaps more salient because the connection of ISA to streams
by pipes is a more likely determinant of taxa loss than ISA in itself.

In the previous paragraph, the importance of representing the urban
system more completely was emphasized. However, a recent study by
King et al. (2005) elucidates another aspect of the inherent complexity of
the system when it comes to assessing aquatic impacts by virtue of urban
development, that is, the spatial arrangement may be an important modu-
lator of watershed land-cover effects on stream ecosystems. Furthermore
and perhaps more significantly, their work, from which Figure 19.7 is taken,
indicates that a threshold effect is in place that comes into play when
between 21% and 32% of the land is developed—at least for the watershed
studied.

Once this point is reached, the macroinvertebrate assemblage compos-
ition plummets dramatically. The authors did not remark on whether the
observed decline in diversity was irreversible. While the land-cover data
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FIGURE 19.7

Scatterplot of the threshold effect of developed land in the watershed on the macroinvertebrate
assemblage composition (Bray-Curtis dissimilarity expressed as nonmetric multidimensional
scaling nMDS Axis 1 scores). Notice that there is essentially a 100% probability (right-hand
scale) of a sharp decline in taxonomic composition beyond 32% development. (From King, R.S.
et al., Ecol. Appl., 15(1), 137, 2005. With permission).
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(percentage developed land) used in the analysis are not strictly equivalent
to percentage ISA, the corollary of using ISA is enticing as to where the
biotic thresholds might lie, and one is inclined to remark here that the range
21%-32% is likely well within the range of ISA, which would be defined
““demonstrable and probably irreversible, loss of aquatic system function”
(Booth and Reinelt, 1993).

An additional study worthy of mention is that by Synder et al. (2005). In
this study, landscape metrics were generated in part with the use of ISA and
tree cover and used in a series of logistic regression models to predict
stream health. The ISA turned out to be consistently the most important
predictive variable in the models while tree cover in the watershed or in the
riparian zones was the second strongest predictor. One of their concluding
statements is somewhat revealing though—""The importance of impervious
surface areas was likely influenced by the existence of storm drains that
bypass buffer zones and effectively connect the stream to the built environ-
ment.” The significance of “effectively”” should not be lost on the reader
given the substance of the discussion that has gone before. Nonetheless, in
closing the authors’ note that the ISA conveyed more information than those
landscape metrics derived using it, which, if nothing else, entertains the
notion that the generalized relationship that has been around for quite some
time (Figure 19.4) has distinct merit to it with the proviso of a distinction
being made with respect to effective ISA.

In point of fact, the results of the Synder et al. (2005) study indicated that
watersheds in excellent health averaged <8% ISA, watersheds in good
health averaged <10% ISA, those rated fair averaged <20% ISA, and those
with a poor health ranking exceeded 29% ISA. These numbers agree with
the bounds of those originally proposed and diagramed (Figure 19.4) by
Schueler (1994) and customized later by Arnold and Gibbons (1996).

19.5 Discussion and Conclusions

A good part of this chapter was used to detail a methodology for computing
ISA as well as giving some direction as to how one can use GIS and image-
processing technologies to delineate and extract the derived ISA data within
a geographical framework—in this case, at the watershed and subwatershed
levels—to see how ISA (1) grew and evolved over time as well as (2) was
linked comparatively with the disappearance or reduction of mussel species
diversity. The conclusion with respect to (1) is that there was signifi-
cant urbanization over time and that this occurred predominantly in the
high-end development exhibiting high values of ISA. Moreover, there was
distinct disparity at this level between the Line plus Flat drainages as
compared with the Whitewater drainage—observed visually and corrobor-
ated statistically. As to (2), aquatic species richness data could only be used
to assess the relative impact of changes in ISA. The empirical evidence is
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quite compelling. First, little impact (in terms of species loss) was observed
in Whitewater (where there was marginal ISA growth); the exception is at
site D (30% lost) and can be explained in that there was a dam immediately
upstream. Second, mussel data on the Line Creek indicated that upstream
sites (H and G), where ISA growth was minimal, had no major mussel loss
whereas those sites further downstream (e.g., ] and K with over 50% loss)
were distinctly impacted. Along the reach (from ] to E), observations in
themselves reveal major growth in ISA in extent and close proximity to the
creek, which is not the case further upstream at sites H and G. Third, the
effect of combined ISA growth in both the Line and the Flat drainages is
perhaps evidenced by the fact that the site where most species were lost (site
L with a 73% loss) is downstream of the confluence (and hence combined
runoff) of these creeks. Marked physical evidence of this is apparent at
this site, which shows that there has been marked widening of the creek
channel; this is consistent with streams heavily affected by urbanization.
The discussion should, however, not preclude other sites as not all
show such marked declines. What it shows is that confounding factors
may lie in any or all of (1) the completeness of the mussel inventories,
(2) the sensitivity of a species to tolerate changes in its physical environ-
ment, (3) a particular habitat’s susceptibility to erosion as well as perhaps
(4) the representation of total ISA rather than effective ISA. Gillies et al.
(2003) recognized such a state of affairs and remarked: “We certainly do
not want to claim that an increase in ISA ‘causes’ the loss of mussel
species. However, as shown in this paper, ISA (an aggregate of many
factors, some of which may ‘cause’ the loss of species) is a good indicator
that is ‘associated” with the loss of mussel species. Obtaining ISA per-
centages (based on remotely sensed data) for larger regions than in this
study may quickly focus urban planners and environmentalists to regions
where aquatic species are severely endangered—and to implement
corrective actions that prevent future habitat degradation and aquatic
species losses.”

The issue of effective ISA is a significant qualification that should be
considered wherever possible but may not be realistic in all instances. The
use of either effective ISA or ISA will become site-specific depending on
resources available or the problem that is addressed. Perhaps the most
important point to come from Walsh’s work on effective ISA is one of future
design of drainage connections to a water body.

Several instances of departures from expectations of biodiversity as might
be inferred from the ISA have pointed toward ecosystem complexity as an
issue that is poorly understood or where the knowledge base is incomplete.
While the discussion has not included the impact of ISA on terrestrial
ecosystems, it must be realized that while they are distinct systems in
themselves they are not mutually exclusive but inextricably linked with
aquatic ecosystems. The biotic processes and patterns of adjacent terrestrial
habitats are connected to overlying water bodies and vice versa. As an
example of this, consider insects that spend part of their life cycle on land
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and in the water. If a particular insect is lost, to what extent will this disrupt
or intensify the interactions and linkages that exist across the aquatic,
riparian, and terrestrial domains?

An alluring aspect of the work of King et al. (2005) is the observation
of a threshold that in many ways is in the same category as the current
debate on climate change. Each (an ecosystem or the Earth’s climate) is
inherently a complex system that has been observed and can shift from
one state to another when a so-called “tipping-point” is reached and simi-
larly may be irreversible (certainly without significant effort and energy)
once initiated.

There is no doubt that a generalization of ISA as a measure of disturbance,
as well as a heuristic tool, for aquatic ecosystems is a practical first-order
indicator of expectations of aquatic ecosystem degradation of biotic assem-
blages. In fact, the preponderance of research, including those cited here,
indicates that the ISA categories for stream quality conditions as originally
set up by Schueler in 1994 still hold fast as representative, if not key,
categories of environmental impact for aquatic ecosystems. This has direc-
ted efforts to the conservation of aquatic ecosystems, which are mostly
centered on limiting a catchment’s ISA to a very small level (Arnold and
Gibbons, 1996; Beach, 2001).
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20.1 Introduction

Urbanization is continuously accelerated accompanied with increasing
congregation of population in cities, with and without planned develop-
ment. Reports have shown that over 45% of people worldwide live in urban
areas currently [1] and this number will reach 50% by the year 2010 [2].
Accurate, up-to-date, detailed, and spatially explicit estimation of popula-
tion at different scales is required to support urban land management
decision making and planning. Much of traditional methods for popula-
tion estimation is based on census data, which are recognized as a labor-
intensive and expensive task and to have difficulty in updating database

409
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regularly [3-5]. As a cost-effective data acquisition technology, remote sens-
ing has been increasingly used in estimating population in recent years in
response to the flourishing of various remotely sensed data [3,4,6].

Research on population estimation based on remotely sensed data can be
tracked back as early as in the 1950s and became more and more popular
since 1970s. Many remotely sensed images collected from different sensors
have been used to estimate population. With various spatial resolutions,
they are especially applicable at a certain scale for the study. For instance,
high spatial resolution aerial photography is useful for population estima-
tion at microscale [6-8], whereas low spatial resolution data, such as those
from Defense Meteorological Satellite Program Operational Linescan Sys-
tem (DMSP-OLS) are suitable for global or regional scale measurements.
However, if a medium scale such as at a city level is concerned, images with
medium spatial resolution, such as those obtained from Landsat TM/ETM+
and Terra’s ASTER sensors, should be considered. Research has proved
that such data are efficient and effective in predicting population in city
or county levels [3-5,9,10]. Lo [6] summarized several approaches com-
monly used in population estimation with remotely sensed data: counting
the dwelling units, using per-pixel spectral reflectance, measuring urban
areas, and using land-use information. The application of these methods
is actually in response to different analytical scales, with the first two
applicable at small areas (1 km? or less) and the last two for larger (or
regional) and medium scales, respectively [9]. It should be noted that the
application of various satellite data is not limited by their coarse spatial
resolution, if they are. With the advancement in image-processing tech-
niques and the combination of suitable ancillary data, low spatial resolution
data can also have the potential in population studies conducted at detailed
scales [11,12].

Because remotely sensed images are scale-dependent, population models
derived from such data are also subject to the impact of scale. Lo [13]
used DMSP-OLS nighttime lights data to model the Chinese population
and population densities at three different spatial scales: province, county,
and city. When different models (allometric growth models and linear
regression model) were applied, it was found that the image data showed
promise in estimating population at all three levels. However, the best
models were obtained at the city level. Qiu et al. [5] carried out a bi-scale
study of the decennium urban population growth from 1990 to 2000 in the
north Dallas-Fort Worth Metroplex using models developed with remote
sensing and GIS techniques. Both models yielded comparable results with
that obtained from a more complex commercial demographics model at
the city as well as the census tract levels, yet the GIS model remained robust
to the scale change because of its insensitiveness to the spatial scale. The
remote sensing model was attenuated when moved to the census tract from
the city level. Harvey [9] suggested that population models could produce
reliable estimates for large areal units rather than the analytical units at
the same scale. Nevertheless, the scale effect on population modeling has
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not been completely understood, and further efforts toward this direction
are needed.

Modeling population based on remotely sensed data remains a challenge
primarily due to the spatial incompatibility problem between input and
output data [10]. First, population information (population counts or popu-
lation density) is not directly related to spectral characteristics of surface
features. Although research has proved that population density is closely
correlated with spectral reflectance values of image pixels [14,15], it is
argued that these pixel values are unable to differentiate areas with various
population densities [3,16]. High population density may be located in high-
rise residential buildings in the city downtown such as those supercities
in the Eastern World or the multistory apartments in the city uptown like
those cities in the Western countries, whereas low population density may
be observed in commercially or agriculturally used lands [3]. Strategies to
deal with this problem have been proposed to combine textural information
[16] or arithmetic operation of image channels [9,10]. Secondly, it creates a
new challenge to apply remotely sensed data to model a quantitative vari-
able like population counts or population density since previous remote
sensing analyses are routinely used for qualitative measurement. New
approaches are called for rather than the purely statistical techniques such
as maximum likelihood classification or image segmentation algorithms.
Finally, ground reference data often fail to fully use the relative ““detailed”
information contained in image data for population modeling, in that the
former usually has lower spatial resolutions than the latter. As a result,
variables extracted from remotely sensed data are aggregated to the same
scale as the ground reference data level when developing population
models. Such models more likely suffer from the problem of inefficiently
modeling extreme cases. Almost all population models based on a single
sampling data have reported to overestimate low population (density) areas
but underestimate high population (density) areas [3,4,10]. In order to
correct this error, Li and Weng [3] stratified population density into three
categories as low, medium, and high density, and developed models indi-
vidually. Yet the spatial continuity of population data was no longer held if
such a stratified method was applied [3]. Besides, remote sensing is mainly
regarded as an efficient tool to investigate population distribution, which is
commonly represented by population density. Yet statistical analyses,
which are often involved with population modeling, are designed to predict
population counts rather than population density [12]. Although these two
variables are convertible, using area-based data to develop models by a
point-based technique is error-induced. It was suggested that model per-
formance can be improved if the model became more complex [9,10].
However, collecting multiple inputs is complicated and expensive, and
often more difficulties are encountered when building such models.

Although remote sensors do not collect population data directly, their
significance relies on the multifacet ancillary information provided, and
thus serves as a feasible solution to all the problems mentioned here.
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Like many other human phenomena, the distribution of population is
closely intervened by various human activities such as lighting, dwelling,
transportation networks, urban sprawl, and land uses. All this information
can be obtained through the technology of remote sensing. Previous studies
have demonstrated that there is a solid correlation between population data
and different remote sensing variables [8-11,17,18]. Impervious surface
(including roads, buildings, parking lots, etc.) is one of the variables that
can be extracted from remote sensing images. Impervious surface has been
emerging as a key environmental indicator for sustainable urban develop-
ment and natural resource planning in recent years [19]. In addition to its
applications in land-use classification [20,21], urban thermal features map-
ping [20], and nonpoint source pollution monitoring [22], the maps of
impervious surfaces are useful in measuring socioeconomic factors such as
population density and social conditions [23]. Lu et al. [4] identified several
advantages of impervious surface data when applying to estimate popula-
tion: stable, almost season- and atmosphere-independent, and land-use-
dependent. The current research uses impervious surface data to estimate
population density.

Census data have been extensively applied in population modeling either
directly or indirectly [12]. However, these data actually show a de jure
population that reports only usual residents of a given area [12], which
often link to lands that are primarily used for residential homes. In order to
model residential population successfully, applying a suitable boundary to
separate residential and nonresidential areas is essential. A common method
to solve this problem is to use classified images [4]. However, obtaining a
high-quality classified image is not easy, especially with medium or coarse
spatial resolution remotely sensed data [20]. In contrast, zoning, which
primarily indicates land use, may serve as a suitable alternative in identify-
ing residential lands. In practice, zoning is one of the several tools used
by urban planners to control new development from harming existing
landscapes. Many factors are considered when creating zoning polygons,
for example, maximum building height and density, extent of impervious
surface and open space, and land-use types and activities [24]. Zoning data
are thus capable of revealing detailed land-use information for a given city.
These data are often available from local government departments. The
residential area identified by zoning data is rarely seen in past population
studies. The current research uses these data to delineate the residential site
of the study area.

Great efforts have been dedicated to modeling population with various
remotely sensed images, yet rarely has research been conducted at multiple
scales. Although Lu et al.’s study [4] has proved that the impervious surface
data can be used to effectively estimate residential population at the block
group (BG) level, the accuracy of using such models at different census levels
is not certain. This study aims to estimate the residential population in
Marion County, Indiana, at three census scales (block, BG, and tract) using
a high-quality impervious surface derived from a Landsat ETM+ image.
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20.2 Study Area

The study area is Indianapolis, located in Marion County, Indiana, in the
United States (Figure 20.1). As the nation’s 12th largest city, Indianapolis is
the geographical center of Indiana and the capital of the state. According

FIGURE 20.1
A map of the study area: Marion County, Indiana, United States, at three census units (block,

block group, and tract).
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to the census of 2000, the population of the city is 860,454—a 7.9% increase
over 1990. Around 627,835 households and 232,619 families were residing
in the city. The population density was 855.1 per km”. Situated on the Tipton
Till Plain, Indianapolis has the possibility to develop in all directions. Like
the typical urban sprawl presented in other American cities, the city continu-
ously enlarged at the expense of adjacent agricultural areas and forestlands
during the past 187 years. Knowing how many people live within a specific
geographic area or administrative unit is essential to public organizations
such as city departments of transportation, tax assessor offices, department
of parks and recreation, and private companies like utility companies and
real-estate companies.

20.3 Data and Methodology
20.3.1 Datasets

A Landsat 7 ETM+ image dated June 22, 2000 was used for this study. It
was collected about the same time when the census and zoning data were
created, showing good promise in the current study. Using the 1:24,000
topographic maps, the image was first geocorrected to a common Universal
Transverse Mercator (UTM) coordinate system. All reflective bands and the
thermal band were then resampled using the nearest neighbor algorithm
with 30 m pixel size. The resultant root-mean-square error (RMSE) was
found to be less than 0.2 pixel. This image was used to develop the imper-
vious surface. Two types of GIS data were also applied, including the
Census 2000 data and the zoning data layer. The 2000 population census
data have been attached to three shape files indicating three levels of census:
block, BG, and tract. The zoning data are obtained from the Indianapolis
Mapping and Geographic Information System (IMAGIS) (http://wwwé.
indygov.org/imagis/index.htm).

20.3.2 Extraction of Impervious Surfaces from Landsat ETM+ Imagery

Extracting impervious surfaces from images is challenging primarily
because of the heterogeneity of urban environment. Consequently, images
with limited spectral and spatial resolutions often fail to map this charac-
teristic explicitly. Many methods have been adopted to derive impervious
surfaces from remotely sensed data. The most popular method currently
used is linear spectral mixture analysis (LSMA), which assumes that the
spectrum measured by sensors is a linear combination of spectra from pure
surface feature types, called endmember [25].

All the reflective bands in the ETM+ image were used to derive imper-
vious surfaces. Basically, several steps were involved in developing the
impervious surface: first, using the minimum noise fraction transform to
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extract the majority of information from original images into the first three
components; second, identifying endmembers (i.e., vegetation, high albedo,
low albedo, and soil) by combining the conventional image-based endmem-
ber selection method with the scatter plots of the first three resultant com-
ponents; third, unmixing the six ETM+ reflective bands into four fraction
images based on a constrained least-square solution; fourth, removing
nonimpervious surface pixels from both the high- and low-albedo fraction
images by incorporating land surface temperature data; and finally com-
bining the modified low- and high-albedo fraction images to get the final
impervious surfaces—Imp (Figure 20.2). The accuracy assessment shows
the overall RMSE and system error of the resultant impervious surface
as 9.22% and 5.68%, respectively. Detailed descriptions for developing this
impervious surface image can be found in Lu and Weng [20].

FIGURE 20.2
Distribution of impervious surface (Imp) derived from Landsat ETM+ 2000 Image in the
study area.
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20.3.3 Zoning Data Processing

The original zoning data layer used in this study has 6908 polygons
categorized into 10 different zoning groups. A detailed thematic map
illustrating 15 residential levels was first created by aggregating all poly-
gons labeled with “D” (means ““dwelling”’). Since DA and DP are primarily
used for agriculture and future development, respectively, they were not
included in the detailed residential map. Besides, as DS mainly indicates
areas having extremely low population density in suburban areas, it was
also excluded. Hence, the final residential map has only 12 residential levels
ranging from D1 to D12 and they were grouped into 4 categories based on
their comprehensive use: very low density, low density, medium density,
and high density (Figure 20.3). These polygons were united as one polygon
showing all residential areas for the study area. These data were then used
to delineate the residential impervious surface (RImp) through the GIS
overlay. A careful visual comparison of residential zoning data and the
RImp image indicates that the application of the former effectively removes
the majority of the nonresidential impervious pixels in the latter. Based on
three types of census units (will be discussed later), it is observed only 8% of
blocks, 0.3% of BGs, and 0% of tracts that contain impervious surface but
without dwelling units were unable to be deleted. These census units were
identified as outliers and would be removed when building models.

20.3.4 Statistical Analysis

20.3.4.1 Model Development

The census data were used as the analytical unit in the study. At each level,
the census data were grouped into two sample datasets: one is the modeling
dataset for developing the population estimation models and the other is the
validation dataset for accuracy assessment. Only 30% of the total census
units at three census levels were randomly selected to build models, and a
2.5 standard deviation combining with scatter plots of population density
and the impervious surface variable was used to identify the outliers.
Correspondingly, the remaining 70% of the census data were the validation
data for model assessment. Table 20.1 summarizes the statistical descriptive
variables for the modeling samples. Because the sizes of polygons for census
units vary with urban land-use patterns, people reside in polygons differ-
ently. In order to avoid the size effect on the actual population distribution
at a given census unit, population density instead of individual population
counts are commonly used in population estimation. Besides, the preli-
minary results showed that population counts have very low correlations
with the impervious surface data. Thus, they were not used to model
population in this study. The population density (PD—persons per km?)
for each census unit at block, BG, and tract levels was calculated. Previous
research indicated that the application of both the square root and the loga-
rithmic forms helped to improve population modeling [3,4,9]. Hence, the two
transformations of population density—SPD and LPD—were also computed.
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FIGURE 20.3

Map of four residential zoning categories: very low density (suburban single family), low
density (low intensity single and two family), medium density (medium intensity single and
multifamily), and high density (center urban high-rise apartment).

TABLE 20.1

Summary of Statistical Descriptions of Modeling Samples at Three Census Levels

Census Standard
Levels Total Cases Samples Minimum  Maximum Mean Deviation
Block 13,989 2,963% (4,196b) 1.79 10,491.53 2,074.93 1,584.11
BG 658 1837 (197°) 12.62 4,442.26 1,541.62 976.12
Tract 212 61° (63b) 104.49 3,415.85 1,303.16 785.69

@ Samples that removed outliers and finally used for modeling.
© Samples selected based on random sampling techniques.
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Landsat ETM+ Zoning Census
image 2000 2000 2000
A A A
Impervious Residential Population density (PD)
surface zoning Square root of PD (SPD)

(Imp) / Logarithmic of PD (LPD)

Residential areas (RImp)

~,

Aggregating data to different census scales

Block Block group Tract

A

SPSS statistical analysis

'

Extraction of samples based on a randomly sampling technique

. '

30% of samples for modeling 70% of samples for validation

FIGURE 20.4
A flowchart of data processing and modeling development.

Data used for the current research have two formats: impervious surfaces
are in raster format whereas residential zoning and census data are vector-
based. The two classes of data were integrated after registering all vector
data to have the same projection as the images. The statistical mean values
of RImp (MRImp) were then calculated for each census zone at the levels of
census block, BG, and census tract.

All variables were exported into SPSS to conduct statistical analysis.
Pearson correlation analyses were first performed among all variables at
each census level. Three groups of regression models were then constructed
by using PD, SPD, and LPD as the dependent variable and mean RImp
(MRImp) as the independent variable at different levels. A flowchart illus-
trating the whole process is shown in Figure 20.4.

20.3.4.2 Model Assessment

Accuracy assessment is essential for complete model development, and
population modeling is not the exception. Calculating residuals derived
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from established models is a very common way, in addition to frequently
used R* values, to evaluate the model performance. For any individual
cases, the relative error (RE) is defined as

RE = (P, — Pg)/Pg x 100 (20.1)

where P, and P. stand for reference and estimated values, respectively. The
model’s overall performance was then determined by mean RE (MRE) with
the following formula:
n
> |RE|
MRE = '% (20.2)

Since mean values are easily affected by extreme values and may not appear
representative of the central region for skewed datasets such as residuals, a
median RE (MedRE) value was also used to measure the model perform-
ance. The MRE and MedRE were calculated for each validated model at
three census levels. In order to further identify the bias generated from the
population models, the error of total (ET) in percentage was also calculated.

Three residual maps were created based on the best estimation models at
each level for geographical analysis of predicted errors. Scatter plots of
predicted and reference variables and relative errors and reference vari-
ables derived from such models using validating data were also used for
the analysis.

20.4 Results
20.4.1 Models of Residential Population Density

Pearson correlation analyses were first employed to examine the bivariate
relationships for all seven variables at each census scale. Table 20.2 exhibits
the correlation matrix of three population density parameters and the
impervious surface variables generated at three levels. All these correlation
coefficients were significant at 0.01 (99%) level, indicating that these rela-
tionships were significant and the variables were linearly and positively
related. Clearly, the strongest correlations were 0.710, 0.595, and 0.480
between SPD and MRImp for the census block and between PD and
MRImp for the BG and census tract level, respectively. It seems the SPD
was a better descriptor than LPD in representing PD since it generally
had a higher correlation with the independent variable—MRImp—at all
levels. Besides, correlation coefficients became larger as the scales increased
between any combination of the three population parameters and the
MRImp. The highest correlation was at the tract level, followed by the BG
and finally the block level. Higher aggregation levels such as census tract
were of benefit to remove more extreme values and to narrow the variance
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TABLE 20.2
Summary of All Models at Each Census Level

Census

Levels Corr. R? Regression Model MRE MedRE ET (%)

Block 0.428 0.183 PD= -1219.335+46987.572 X MRImp  396.15  37.12 -12.69
0.480 0.230 SPD=2.096 + 85.737 X MRImp 5148 1945 -3.16
0.466 0.218 LPD=5.410+ 0.466 X MRImp 30.71 25.52 +1.42

BG 0.595 0.354 PD= -1995.631+7378.838 X MRImp 275.80  32.77 -3.91
0.592 0.351 SPD= -12.403+104.295 X MRImp 4475 1871 +0.62
0.555 0.308 LPD=4.354+5.785 X MRImp 10.41 6.16 +1.14

Tract 0.710 0.504 PD= -3021.746 +9550.366 X MRImp 5596  27.15 +4.01
0.706 0499 SPD= -29.567 + 141.658 X MRImp 2274  14.32 +3.53
0.672 0452 LPD=3.134+8.492 X MRImp 6.36 4.28 +1.33

Notes: Corr.—the Pearson correlation coefficient between PD (SPD, LPD) and MRImp; MRE—
mean value of relative error; MedRE—median value of relative error; ET (%)—error of total,
which is the total population estimation error based on the overall dataset in the study area (an
addition (4) symbol means overestimated whereas a minus (-) symbol means underestimated);
PD—population density; SPD—square root of population density; LPD—natural log of
population density.

of datasets. With relatively stable covariance between population density
and the areas of impervious surfaces, their corresponding correlation coef-
ficients will increase with increasing aggregation levels.

Using the three population parameters as the dependent variable and the
MRImp as the independent variable, a total of nine population density
models were built. Table 20.2 also presents the results of all the modeling
and model validation. R? is interpreted as the square root of the correlation
between observed and predicted values. Therefore, higher correlation coef-
ficients are promising in constructing better models by the two correlated
variables. R is frequently used as an important indicator of the strength of
the linear regression relationships. Table 20.2 shows that the the best models
developed at different levels were the SPD-derived model at the block scale
and the PD-derived models at the BG and the tract scales with an R* value of
0.230, 0.354, and 0.504, respectively. It is evident that the poor model was
developed based on smaller analytical units (like the block level), whereas
better models are associated with larger analytical units (like the BG or tract
levels). Hence, the SPD-derived model at the block level should create more
estimation errors than by two PD-derived models at the other two levels.
With increasing areal units, population density models became better and
better and the best model created at the tract level was able to account for
over 50% of the variance in population density.

Two of the best models at BG and census tract levels were developed
using the same dependent variable (PD). However, the best model at
the block level was created by SPD and PD turned out to lead to the poorest
model. This is probably because the strength of PD, which is the “original”
population modeling variable, and MRImp in modeling population were
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attenuated by smaller areal units. Once a certain size of the areal unit is
reached, the correlation between these two variables can be greatly
improved, leading to better population models. Hence, if the analytical
units are large enough, the population density variable does not need to
use other transforms, such as the square root, logarithmic, and inverse, to
guarantee a better population model.

20.4.2 Validation of Residential Population Density Models

The validation results for all developed population density models at three
census scales are summarized in Table 20.2. It is expected that good models
should have small MRE and MedRE values. Because the square root and
logarithmic transforms diminish the original population density data quan-
titatively, the resultant MRE and MedRE values from the former are smaller
than those from the latter. Generally speaking, the difference between MRE
and MedRE decreased consistently from models using LPD as the depen-
dent variable, then SPD, and finally PD at each census scale. Although
models developed by LPD are the poorest in terms of R* values, they
surprisingly generate good validation results. Conversely, the PD-derived
models could generate higher R* values, yet their validation results tended
to be the poorest. This is probably because the logarithmic transform greatly
reduces the original population density data and this change is greater than
that resulted from the square root transform. Meanwhile, the difference
between MRE and MedRE values indicates that extreme values of popula-
tion density had a significant impact on the models. PD tends to create the
most extremes at all three scales, followed by SPD, then LPD. As analytical
scale changes from block to BG to tract, the scale effect was apparent with
respect to both MRE and MedRE. With the same dependent variables, the
model’s relevant MRE and MedRE values reduced correspondingly as
well as their difference. Therefore, population models were systematically
improved by areal units with increasing size.

Based on the model developed from each census scale, the population of
individual census units can be calculated, and the total population of the
whole city can be summed up. The error of total in percentage was com-
puted with the difference between estimated total and census reference total
by the census reference total for the whole city. An addition symbol indi-
cates the overall overestimation, whereas a minus symbol represents an
overall underestimation. Clearly, almost all population models tended to
overestimate the total population, no matter which census level was con-
sidered. Only three of them underestimated the total population: the
PD- and SPD-derived models at the block level and the PD-derived model
at the BG level. Overall, all population models developed at all levels were
able to produce comparable results. The best model generated the smallest
gap between the estimated and reference total, which is the SPD-derived
model at the BG scale, whereas the poorest model produced the huge
difference, which is the PD-derived model at the block level. With a medium
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analytical scale, the model developed at the BG level surprisingly produced
the closest number to the total census reference by using all three population
parameters. The SPD-derived model at this level far exceeded the one
constructed at the census tract level. The models developed at the tract
level only produced “middle” results; even they were the best in terms of
R?, MRE, and MdRE. Although it is diagnosed that the poorest models were
all developed at the census block level with the values of R?, MRE, and
MedRE, the SPD model at this scale actually produced a closer result to the
reference value than that from the census tract level.

Scatter plots of reference and predicted population density are illustrated
in Figure 20.5. Obviously, the two variables did not present a very clear
linear relation at the census block level (Figure 20.5a). When more aggre-
gated data were used as the analytical units, the linear correlation between
reference and predicted population density became apparent (Figure 20.5b
and c). Models were thus improved, especially for medium population
density areas. All models seem to have a common problem. Lower popula-
tion density areas were often overestimated. In contrast, high population
density areas tend to be underestimated. A close look at Figure 20.6a shows
that the model at the block level tended to overestimate the results if
population density is less than ~100 (persons per km?). This threshold
nears about 200 and 400 (persons per km?) for models produced at the BG
and tract levels, respectively (Figure 20.6b and c). Conversely, the models
would underestimate the results if population density is greater than ~500
(persons per km?) at the block level, 1500 (persons per km?) at the BG level,
and 1800 (persons per km?) at the tract level (Figure 20.6).

Residual maps showing the distribution of residuals at the residential
areas resulted from the best model at each census level were also created
(Figures 20.7 through 20.9). The visual comparison between residual maps
and airphoto of the study area indicates that census units that were signifi-
cantly underestimated are mainly covered by multistoried apartments.
Although high population density is reported by census data, the relatively
much “smaller” impervious surface of multistoried buildings is insufficient
to reveal this pattern. Meanwhile, areas that were greatly overestimated are
dominated by high impervious surfaces such as highways, playground
racetracks, and parking lots, but not related to any dwelling unit. This
indicates the problems when using zoning data to delineate residen-
tial/nonresidential areas on an image data. Although zoning data are
designed to indicate land-use information and they try to reveal such
information as detailed as possible, it is primarily a GIS variable that is
area-based. Consequently, the detailed information as presented by any
single zoning is limited by the size of the polygon. Once a certain kind of
land-use type locates within the zoning but is to be got rid of, there is no
way to remove it. For example, it is technically impossible to delete a
highway that runs across a zoning polygon with the zoning GIS data layer
alone. Additionally, no matter how many types of information are endued
to a zoning polygon by different attributes, it can only represent certain
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FIGURE 20.7
Distribution of residential population density residuals calculated from the model constructed
at the census block level.

information with a single GIS layer. This property induces problems espe-
cially when it is to be integrated with a pixel-based data such as images.
Besides, the visual comparison between a residential zoning map and three
residual maps was also conducted. It showed that the highly over- or
underestimated census units in the central city all fall into high- and
medium-density zoning categories, which are primarily used for suburban
and inner-city high-rise apartments (Figure 20.3). Conversely, in the city’s
surrounding rural area, census blocks, BGs, and tracts that are greatly
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FIGURE 20.8
Distribution of residential population density residuals calculated from the model constructed
at the block group level.

over- or underestimated tend to fall into zonings that are not primarily
residential. For any single unit of these census data, only a small portion is
identified to be covered by residential impervious surface. When using
these data in modeling, significant biases would occur. The remaining
census units that stand in between tend to be moderately over- and under-
estimated, which is consistent with the distribution of low- and medium-
density residential zonings.
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FIGURE 20.9
Distribution of residential population density residuals calculated from the model constructed
at the census tract level.

20.5 Discussions and Conclusions

This study investigates the feasibility of using impervious surface data to
conduct a census-based multiple scale analysis of residential population
modeling at a city (or county) level. With different criteria (R*, MRE, and
MedRE), the best three population models were all developed at the census
tract level on the basis of different dependent variables. According to the R*
value, the best model was developed from SPD at the census block scale and
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from PD at the BG and census tract level, respectively. Yet with the MRE
and MedRE, the best models were produced by using LPD as the dependent
variable, followed by SPD and then PD variables. In addition, with an ET
value around 1(%), the LPD-derived models tended to estimate closer
numbers to the census reference for the total population in Marion County,
although the smallest ET value (0.62%) was found to be associated with the
SPD-derived model at the BG scale.

Overall, it is found that impervious surfaces are an effective variable in
modeling residential population at all three census scales. However, acquir-
ing a high-quality impervious surface is not an easy task due to the imper-
vious surface per se and the availability of techniques in extracting such
surfaces. Impervious surface is extensively mixed with various urban areas,
especially those that are spectrally confused with bare soil. It thus creates
a big challenge to identify a suitable single endmember to denote all kinds
of impervious surfaces. Approaches to solve such problems have been
suggested to apply multiple endmember LSMA and to use hyperspectral
imagery [20,26].

Since the objective of population modeling is to estimate population (or
population density) in residential areas of the city, applying an accurate
threshold to remove nonresidential areas is critical. It is observed that zoning
data have the potential to effectively separate residential/nonresidential
areas in remotely sensed images. The incorporation of zoning data in
census-based population modeling brings other benefits, too. By comparing
the zoning map and three census datasets, the correlation between census
population distribution and specific land-use types is directly given. It thus
explains why some census units’ population density is more likely to be
mis-estimated. However, because of the vector-based data format, the size of
zoning polygons limits the degree of detailed information that can be
extracted. In other words, any detailed information within a single polygon
is aggregated and thus “disappeared.” In this study, if the residential zone
identified by the residential zoning map is largely occupied by residen-
tially used lands, image pixels masked out by such residential zones can
represent residential pixels correctly. However, if more than half the lands
of the residential zone is not used for dwelling, many image pixels can be
incorrectly masked out as residential pixels and thus attenuate the perform-
ance of using impervious surfaces to model residential population. A more
efficient threshold is needed to isolate true residential pixels so that the
results of remote sensing-based population model can be greatly improved.

The difference between MRE and MedRE shows that the performance
of population density models was strongly affected by extreme values
(extreme low and high population density). A common problem found in
all three models is that they significantly underestimated the high-density
areas but overestimated the low-density areas. This is because the popula-
tion model was developed in such a way that it assumes a general uniform
population density per census unit at the same level. Hence, none of the
models performed well at extreme values.
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With different criteria (R>, MER, MedRE, and ET), the best model is
identified to be with different population parameters. It is difficult to say
which population parameter is superior to others in producing better
population density models. In modeling development, the original form of
population density seems to hold promise in building acceptable models
with large R? values, once the analytical units are large enough such as the
BG and census tract units. In model validating, however, the transforms of
population density like the square root or the logarithm are required to
obtain an ideal MER, MedRE, and ET values.

The significance of the census-based scale effect described by various
sizes of areal units on modeling population is obvious. Generally speaking,
the performance of population modeling increased with increasing analy-
tical scales from census block to BG, and it reached the best at census tract.
Data predicted by microscale-based models as such from the block level
tend to produce wide biases and thus it is less possible for the predicted and
reference values to hold a linear correlation at this scale. Nevertheless, it
should be noted that different model assessment criteria tend to indicate
different information. For example, the ET criteria reveals that all popula-
tion density models developed at the BG level could produce the most
comparable estimates as the census reference values, even better than
those models derived from the census tract scale. Clearly, the census block
level is the most inappropriate scale to estimate population for the whole
city. Yet with the transformation of the square root for the dependent
variable, the performance of the model developed at the block level could
be greatly improved and exceeded the model constructed at the tract level.
Thus, applying multiple assessment standards is necessary to make a gen-
eral judgment for research regarding different models with different vari-
ables and at different scales.
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Aquatic ecosystems, 388, 399
Aquatic fauna, 389
Aquatic species richness
data, 403
ArcHydro, 393
Area-perimeter method, 126
Artificial neural networks, 23
ARTMAP classification, 155
ASD, see Analytical spectral devices
Asphalt mix, 238
erosion and oxidations,
241-242, 245
natural aging of, 239-240
Asphalt road distresses, 241-243
Asphalt road surfaces, 237
features, 244-245
maintenance, 243-244
road distresses, 241-243
spectral properties of, 238-241
ASTER, see Advanced spaceborne
thermal emission reflection
radiometer
ATLAS, see Advanced thermal land
applications sensor
AutoCAD, 285
AVIRIS, see Airborne visible infrared
imaging spectrometer
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B

Back-propagate error, 81
Backscattered field evaluation, by
electromagnetic models
GO solution, 308
Kirchhoff approximation, 306-307
PO solution, 307
scattering methods of, 304-306
Bare soil, 12
Bayesian fusion approach,
204-206
Bayesian probability theory, 204
Bayes’ theory, 198
Belgium geographic institute, 218
Bitumen, 238-239
Box-counting dimensions, 124
Building edge detection
LiDAR data coregistration and
orthoimage, 253
line extraction, of building’s roof,
253-256
Building facade integration, 282-284;
see also CC-Modeler
Building polygon extraction, 256
Building roof
LiDAR footprints in, 258
line extraction of
image polygon establishment,
255-256
initial straight line
formation/refinement, 254-255
LiDAR data, edges detection from,
253-254
orthoimage, edges detection
from, 253
polygon creation of, 257
user accuracy and kappa statistics
of, 338
Bulk runoff coefficient, 356

C
CAD-editing, geometrical regularization
and, 280-281
Canonical dihedral elements, 301
Canonical scattering solutions, slant-
range distribution, 326-327
CC-Modeler, 275, 292
data flow, 276
extensions
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building facade integration,
282-284
geometrical regularization, 280-281
topology adjustment, 281-282
and TLS/SI200 system, 3D city
modeling with, 288-290
user interface, 277
CC-Spatial Information System,
277-278
CC-TLSAutotext, 290, 292
Chesapeake Bay watershed, 359, 362
Chip seal treatments, 243
C-H stretching, 239
City models, applications of, 271-273
Classification and Regression Tree
(CART) approaches, 166-168
Closed-form scattering solutions, 303
Color distortion, 339-340
Conestoga watershed, 364-365
Context areas classification, 195
Contour-tracing algorithm, edge
vectorization by, 253
Co-occurrence matrix-based filtering,
336-337
Co-occurrence texture analysis, 148
Correlation analysis, 103
Cosmo Player, 285, 290
Cost function, of building model, 254
Cover types, multivariate and univariate
ANOVA in, 130-131
Crow River Watershed, 14
CyberCity Modeler, see CC-Modeler

D
Data masking, 394
Datasets, for 3D-building model
generation
aerial image data, 260
control field, 259-260
LiDAR data, 260-261
DBM, see Digital building model
DBM and DTM, creation of, 258-259
building and LiDAR data, relationship
between, 256-257
interpolation algorithm via planar
equation, 258
Decision-level fusion, 203-204
Decision tree classification, 4
Decision tree classifier, 59
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Decision tree modeling, 60
Defense Meteorological Satellite
Program Operational Linescan
System, 410
Defuzzification process, 344
Department of Natural Resources, 9
Detention ponds, 354
Detour factor, 189-190
Difference vegetation index (NDVI)
values, 45
Differential box-counting (DBC)
method, 124
Digital aerial cameras, city modeling
and, 273
Digital aerial images and LiDAR data,
3D building model from, 251
datasets, 259-261
DBM and DTM, creation of, 258-259
building and LiDAR data,
relationship between, 256-257
interpolation algorithm via planar
equation, 258
edge detection, 252-256
experimental outcomes for, 261-264
polygon extraction, 256
Digital building model, 253, 263
and DTM, creation of (see DBM and
DTM, creation of)
Digital elevation models, 127
Digital multispectral videography
data, 82
Digital orthophoto quadrangles, 8
Digital orthophoto quarter
quadrangles, 44
Digital Station, CC-Modeler and, 275
Digital Surface Models, 288
Digital surface models (DSM), 252,
258-259, 261
Digital terrain model, 252, 261-262, 270,
276, 291
and DBM, creation of (see DBM and
DTM, creation of)
Dimensionality definition, 121
Direct Georeferencing Model (DGR),
288
DMSP-OLS, see Defense Meteorological
Satellite Program Operational
Linescan System
DNR, see Department of Natural
Resources
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DOQQ, see Digital orthophoto quarter
quadrangles
DOQs, see Digital orthophoto
quadrangles
DOT, see U.S. Department of
Transportation
Double return contributions
ground-wall return from, 313
wall-ground return from, 311-313
Double-scattering contribution, 303
DSM/DTM generation, 288
DTC, see Decision tree classifier
DTM, see Digital terrain model
DuPage county and digital videography
data, 83
Dyadic Green’s function, 306

E

Eagan area
accuracy assessment statistics
evaluation, 13
high-resolution DOQ), 12
Earth resources observation and
science, 44
East Greenwich, Rhode Island, study
area, 86
Ecohydrology, 370
Ecoregions, 7
Ecosystem impairment, 360
Electronic absorption processes, 240
Endmember selection, 96, 99
Enhanced thematic mapper plus
data, 4
images, 41
reflective bands, 61
reflective bands spectral mixture
analysis, 65
Environmental policy integrated
climate, 374
Environmental Protection Agency, 375
EPA, see Environmental Protection
Agency
EPIC, see Environmental policy
integrated climate
ERDAS imagine spatial model, 9
ERDAS VirtualGIS, 285
EROS, see Earth resources observation
and science
ETH Zurich campus, 3D model of, 272
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ETM+, see Enhanced thematic
mapper plus

Euclidean dimension, 121

European global monitoring for
environment and security, 145

Evapotranspiration, 370

F

fBm model, see Fractional Brownian
motion model
Feed-forward ANN models, 26
FIS, see Fractional impervious
surface area
Fish collections and watershed
imperviousness, 389
Flat Creek watershed, 395
sites vs. species vs. year (body) for,
400-401
Flat-field correction method, 167
Four-endmember SMA model, 113
Four-sided triangular prisms, 125
Fractal dimension, 121
algorithm of, 129
calculations issues in, 127-128
calculations of, 123
statistical evaluation, P-Values of,
133-134
urban environment, 122-123
Fractional Brownian motion model,
126
Fractional impervious surface area,
376, 379
Fractional vegetation cover,
376, 391
Fredericton, Canada QuickBird image of
area, 226
Freshwater mussel diversity, 395
Fresnel coefficient, 311
Full range (FR) spectrometer, 238
Fusion concept, 204
Fusion rule base, 146-147
Fuzzy ARTMAP multiband
classifier, 148
Fuzzy ARTMAP NN (A) and MRF
classifier (M) maps, 154
Fuzzy classification value, 170, 188
Fuzzy logic, 344
Fuzzy-set theory, 204
FVC, see Fractional vegetation cover
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G
Gap weighting, 189
Gaussian random process, 306
Generalized watershed loading
functions, 374
Geographic information system, 145
attribute information and connection
to, 284-285
database, 216
platform, 271, 277
Geometrical optics (GO) scattering
models, 303
Geometrical regularization
automatic, least-squares adjustment
and, 280
by CAD-editing, 280-281
GeoTIFF format, 86
Ginza project, TLS and SI-200 linear
array sensor imagery and,
292-293
GIS, see Geographic information system
Global-grouping algorithm, 187
Global positioning system mapping, 164
Global urban-rural mapping project, 153
GMES, see European global
monitoring for environment
and security
GO formulation, 308
Google Earth, 286
GPS mapping, see Global positioning
system mapping
Grafton Village Wisconsin, United States
IKONOS image of, 25
study area, 24
Graph management module, 221-222
Graph polylines extraction, 221
Gray-value curvature-based
approach, 193
Ground instantaneous field of view
(GIFOV), 245
Ground sampled distance, 120
Ground-wall reflections, 311
Group I and II impervious areas
curve number for, 373
runoff from, 372
GRUMP, see Global urban-rural
mapping project
GSD, see Ground sampled distance
GWLF, see Generalized watershed
loading functions
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H

HDI, see Histogram distance index

Heron’s formula and TPSA algorithm,
129-130

High albedo, low albedo and vegatation,
105-107

Highways

extraction of, 202
model of, 200-201

Histogram distance index, 148

Hortonian overland flow, 371

Human-computer interactive operation,
262-263, 265

Hybrid city model, 274

Hybrid 3D spatial information system,
277

Hydrocarbon compounds, electronic
transitions in, 238-239

Hydrologic models, 374-375

Hydrologic simulation program-Fortran
(HSPF), 374

Hyperion-derived impervious surface
image, 114

Hyperspectral datasets, 240

Hyperspectral remote sensing, 237

|
ICM, see Iterated conditional mode
IDRISI Kilimanjaro software, 27
IDW method, see Inverse distance
weight method
IKONOS, 22, 286
Image-processing systems, 393
Image rectification, 288
Imagine, 393
IMAGIS, see Indianapolis Mapping and
Geographic Infrastructure System
Imperviousness, 371
in urbanized watersheds, 375
Impervious surface area; see also Group I
and II impervious areas
accuracy assessment estimation, 32-33
and aquatic ecosystems, 388, 399
activation-level map, 31
ALI image of, 100
ANN model for, 30
and aquatic fauna, case study of, 389
characteristics of, 371
classification of, 6-8
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conceptual model at pixel level, 5
definition of, 3—4
delineated watershed of, 393
derivation techniques and algorithms
for, 390
digital numbers to radiance, 390
fractional vegetation cover, 391
image scene classification, 392
radiance to apparent
reflectance, 391
Eagleview shopping center in
Pennsylvania, 354
estimation of, 22, 43, 375
accuracy of ISA estimations, 50-51
high-resolution images
classifications, 45
Landsat imagery, 45-46
regression tree models, 46-47
remote sensing data, 44
evaluation of, 101-102
flowchart of image processing and
classification procedures for
mapping, 6
Hyperion image of, 101
large-scale databases of, 366
mapping in challenging
environments, 145
mapping procedures for, 6
mapping with IKONOS data, 66-67
Peachtree watershed, 395-399
in Red River of North Basin (see Red
River of North Basin)
reflectance spectra of, 99
residential area in Pennsylvania, 355
runoff response to, 370, 376
satellite determination of, 390
in Simms Creek watershed (see Simms
Creek watershed)
statistics of, 16
and stream impairment, 359
and surface runoff, 356-359
Uwchlan Township, 358
and water quality, 359
Impervious surface data
advantages, 412
Impervious surface mapping and
settlement detection, 151
Impervious surface regression models
development, 8
Indianapolis, Indiana, United States
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IKONOS data of, 61
study area, 60

Indianapolis Mapping and Geographic
Information System, 414

Indianapolis Mapping and Geographic
Infrastructure System, 61

Indiana State Plane East Zone,
orthophotographs, 95

Infiltration excess runoff, 371

Informal and formal settlement
mapping, 151

InJECT (INPHO GmbH),
274-275

Integration of road-class-specific
modeling, 200

Intersection snakes initialization, 222

Inventor/Explorer (SGI), 285

Inverse distance weight method,
258-259, 262-263

ISA, see Impervious surface area

Isarithm method, 124

ISODATA approach, 67

Iterated conditional mode, 150

K
Kirchhoff approximation, 306-307
k-nearest (kNN) classifier, 7

L

Lagrange Interpolation Model, 288
Land cover and land use classification,
120-121
Land-cover mapping, 147
Landsat 7, 390
LANDSAT and SAR data, 156
Landsat Enhanced Thematic Mapper
Plus (ETM+), 120
Landsat greenness and percent
impervious surface area, 11
Landsat images
accuracy assessment sites, 10
acquisition dates and paths and
rows, 8
digital number (DN), 45
impervious surfaces from, extraction
of, 414-416
reflective bands in, 414415
for Uwchlan Township in
Pennsylvania, 358
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Landsat science data users
handbook, 45
Landsat thematic mapper (TM), 4
Landsat TM/ETM+
digital imagery, 5
tasseled cap values, 7
Landsat TM images, 347
spatial resolution of, 332
and SPOT Pan images
fusion of, 333 (see also Synthetic
variable ratio (SVR) image fusion
method)
small-scale roof mapping using,
332-333
Landsat TM tasseled cap greenness, 5
Land surface temperature, 59
Land use and land cover, 39
Las Vegas, Nevada
aerial photos, 54
impervious surfaces in, 48
study area, 4143
urban land usage, 53
Latent heat, 370
Least-squares adjustment, geometrical
regularization and, 280
Least-squares method, planar equation
and, 258
Level-of-detail (LoD), 285
LiDAR data and digital aerial images,
3D building model from, 251
datasets, 259-261
DBM and DTM, creation of,
258-259
building and LiDAR data,
relationship between, 256-257
interpolation algorithm via planar
equation, 258
edge detection, 252-256
experimental outcomes for, 261-264
polygon extraction, 256
Light detection and ranging data, see
LiDAR data
LIM, see Lagrange Interpolation Model
Linear array CCD aerial cameras, 3D city
models generation and, 286
application software development,
287-288
test projects, 290-293
with TLS/SI-200 images and
CC-Modeler, 288-290
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Linear spectral mixture analysis,
95-96, 414
Line Creek watershed, 394, 398
mussel data on, 404
sites vs. species vs. year (body) for,
400401
Line extraction, of building’s roof
image polygon establishment, 255-256
initial straight line
formation/refinement, 254-255
LiDAR data, edges detection from,
253-254
orthoimage, edges detection from, 253
Line-matching technique, 255
Line-perspective projection, 288-289
Line plus Flat sub-watersheds, 396
sites vs. species vs. year (body) for,
400401
Line primitive processing, 186
LOG algorithm, building edge detection
and, 253-254
Logarithmic of PD (LPD), 418
Low-albedo and high-albedo fraction
images, 60, 62-64
Low-albedo materials composition, 116
Low- and high-reflectivity impervious
surface (LRIS and HRIS), 67
LSMA, see Linear spectral mixture
analysis
LST, see Land surface temperature
LULGC, see Land use and land cover

M

Macroinvertebrate assemblage
composition, 402

MAE, see Mean average error

Maintenance methods, for asphalt road
surfaces, 243-244

MANN, see Modular artificial neural
network

Manning’s roughness coefficients, 381

MANN output and control unit, 80

MANOVA-based classifier, 84

Maps digitization, 3D city modeling
and, 273

Marion County, EO-1 ALI image and
Hyperion image, 95

Marion County, Indiana, United States

Landsat 7 ETM+ image of, 61
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study area, 60
Markov random field, 147
MASC model, 83-87
flowchart of, 85
results of, 90
Maximum likelihood classifier, 67
Maya (Alias Wavefront), 285
MB DTM vector data, 285
Mean average error, 32
Medium-scale roof mapping
object-oriented classification for,
341, 345
classification, 343-344
segmentation of image, 342-343
satellite images used for, 339
using fused QuickBird Pan and MS
images, 339
Mesabi Iron Range, 9
MESMA, see Multiple endmember
spectral mixture analysis
Microsoft MFC function, 257
Microsoft Virtual Earth, 286
Microstation, 285
Mines area, 9
Minimum description length (MDL), of
building model, 254
Minnesota DNR-division of lands and
minerals, 9
Minnesota GAP land cover
classification, 9
Mixture tuned matched filtering,
168-170
MLC, see Maximum likelihood classifier
MLC algorithm, 67
Model predictions and SAR image
appearance comparison, 328-329
Moderate-resolution imagery, 120
MODTRAN, 392
Modular artificial neural network, 79
MRE, see Markov random field
MTMF, see Mixture tuned matched
filtering
MTMEF-CART method, 173
Multiaspect SAR imagery, 202-203
Multiple endmember spectral mixture
analysis, 116
Multiple regression model, 4-5
Multiple-width textures, spatial
analysis, 147-148
Multiscale texture fusion, 148
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Multispectrally classified buildings,
335, 337
Multispectral (MS) images, 332
Multitemporal subpixel ISA
estimation, 43
Municipal Separate Storm Sewer System
(MS4) communities, 4

N

NADB83 Virginia State Plane Coordinate
system, 260

NASA'’s calibrated airborne
multispectral scanner, 126

NASA Wind, 286

National Census population data, 145

National elevation dataset
derivatives, 393

National Land Cover Database, 41

NAVDS88 datum, 260

NDVI, see Normalized difference
vegetation index

Near-far range intensity loss correction,
193-194

NEURALNET module, 27

Neural network structure, 28-29

Neuro-fuzzy classifier, 154

NHDPlus, 393

NLCD, see National land cover database

NMS, see Nonmaximum suppression

Noise filtering, 336

Nonbuilding features, 337

Nonlinear sigmoidal function, 27-28

Nonmaximum suppression, 190

Normalized difference vegetation index,
126, 375, 391-392

North American Datum,
orthophotographs, 95

Nutrient and sediment loads, 360

0

Oberpfaffenhofen, southern Germany
study area, 206
Object-oriented classification, 170
Object-oriented nearest neighbor, 170
Occlusion_shadow sketches for context
relation, 183
One-image multispectral (RGB)
mode, 286
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Open channel flow velocity, 381
Optech 1210 LiDAR system, 260
Orthoimage, 256; see also Building edge
detection
edges detection from, 253
LiDAR data coregistration and, 253
Orthophotographic quadrant (DOQ)
imagery, 166
Overall change of heterogeneity, 84
Overland runoff, 371

P

PaDEP, see Pennsylvania Department of
Environmental Protection
Panchromatic (Pan) images, 332
Pan-sharpened QuickBird image, 345
classification of, 344
and QuickBird MS images, 344, 346
rural scene of, 342
suburban scene of, 341
Parallel road sides extraction, 223
PARPAR, see Photosynthetically active
radiation
PASDA, see Pennsylvania spatial
data site
Pavement condition index (PCI), 238, 240
Pavia, Italy study area, 152-156
PCI Pansharp, 340
Peachtree city, urbanization in, 398
Peachtree watershed
digital hydrography of, 397
and freshwater mussel diversity, 395
ISA for, 395-399
Pearson’s correlation coefficient (R), 32
Pennsylvania Department of
Environmental Protection, 360
Pennsylvania spatial data site, 362
Pennsylvania watersheds, phosphorus
yield vs. percent woodland,
359-360
Performing density slicing, 126
Per-pixel image classification, 59
Pervious surfaces, 370
Phasor domain and closed-form
solutions, 303
Photogrammetric approaches, building
extraction and, 269-270
city models generation and,
273-275
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Photosynthetically active radiation, 392
Physical optics (PO) scattering
models, 303
Piecewise linear fuzzy functions, 187
Piecewise Polynomial Model (PPM), 288
Pixel size and digital numbers,
relationship, 130
Planar equation, 258
PO approximation, 307
Population
counts, 416
modeling, 410-412
parameters, 419420, 422
Population density (PD), 411, 420; see also
Residential population density
models
at block, BG, and tract levels,
416, 423
estimated and reference, scatter
plots of, 423
estimation of, 412
Pearson correlation analyses of, 419
relative error and reference, scatter
plots of, 424
Population estimation, 409
accuracy assessment of, 418
datasets for, 414, 416
in Indianapolis, 413-414
with remotely sensed data, 410
statistical analyses of, 411, 418
Portland cement, 247
Power-sharing approach, 303
Power spectrum method, 126-127
Probabilistic fusion strategy, 203

Q
QuickBird data, 286
QuickBird multispectral image
in Fredericton, 340
in Oromocto, 340
and pan-sharpened QuickBird MS
images, 344, 346
QuickBird Pan and MS Images, 332
fusion of, 339-340
medium-scale roof mapping using, 339

R
Radar cross section, 301
Radar off-nadir angle, 305-306
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Rainstorms, in Pennsylvania, 356-357
Raveling spectrum, 242
Ray-tracing procedure, 301
RCS, see Radar cross section
Real-image texture, 285
Real imperviousness, 31
Real land-use patterns, 55
Real-time visualization, 285
Reconstruction module, 228-229
Red River of North basin, 376-377
imperviousness dynamics of, 379
land-cover change analysis of, 378
Landsat images for, 378
precipitation of, 380
runoff response analysis of, 380
Redundancy definition, 187
Regression tree models, 4, 47
Remote sensing mapping, 245
Remote sensors, 332
Research and special programs
administration, 164
Residential population density models,
419-421
at block, BG, and tract levels, 420
validation of, 421
Residential population density
residuals, distribution of
at block group level, 426
at census block level, 425
at census tract level, 427
RGB CCD arrays, 287
Rhode Island geographic information
system (RIGIS), 86
RiverTools, 393
RMSE, see Root-mean-square error
RMS error for Hyperion, 105
Road-class-specific modeling, 198
Road extraction
concepts for, 197-198
global context for, 199
linear approaches of, 218-219
local context for, 198-199
related work on, 184-185
remote sensing data from, 180-184
rural areas for, 194-195
SAR images from, 190-191
surface approaches of, 219
TUM-LOREX approach for, 192
Road intersections extraction, 224
Road model
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extraction strategy of, 186
SAR images in, 191
semantic network, 182
ROADS and FALSE_ALARMS, road
extraction process, 204-206
Roads network
cartographic representation of, 218
geometric criteria of, 230-231
graph extraction, 226228
high resolution images, 220
linear and surface representation
of, 217
reconstruction algorithm of, 224
topology management and
reconstruction, 221
Roof mapping, see Medium-scale roof
mapping; Small-scale roof
mapping
Roofs and roads, pairwise univariate
analysis, 137
Root-mean-square error, 414
Root-mean-square (RMS) error, 7
RSPA, see Research and Special
Programs Administration
Rule-based land-cover mapping, 168

S

SAM, see Spectral angle mapper
Santa Barbara asphalt road spectra
library, 237
SAR, see Synthetic aperture radar
Scale definition, 122
Scale-dependent phenomena, 122
SCCU, see Spectrally consistent
classification units
SCS, see Soil conservation service
Seattle-Tacoma, Washington
aerial photo, 53
impervious surfaces in, 48
study area, 4142
Segmentation, 342-343
Semiautomated photogrammetric
methods, 274
SHARP, 366
Shelton, Nebraska study area, 165
SHI, see Stream health index
Shin-Yokohama Station, 290-291
Shortwave infrared (SWIR1 and SWIR?2),
238-241
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SIAM, see Subpixel imperviousness
assessment model
Silicon CCD focal plane array, 128
Simms Creek watershed, 377-378
hydrograph comparison of, 381-383
imperviousness dynamics of,
380-381
Simulator for water resources in rural
basins, 374
Single building canonical element, in
SAR image models, 301-304
Single return contributions, 308
building’s walls from, 309
ground and building’s roof from,
309-310
Single-scattered contributions, 301
Skyline (idc), 285
Slant-range cell, 303
Slurry crack seal, 243
SMA, see Spectral mixture analysis
Small-scale roof mapping
accuracy assessment of, 337-338
medium-resolution satellite images
for, 332, 334
multispectral classification for, 333
spatial feature postclassification for,
335-337
using Landsat TM and SPOT Pan
images, 332-333
Snail-time visualization, 285
Soil and water assessment tool, 374
Soil conservation service, 356
Soil conservation service curve number
(5CS-CN) method, 372-374
Solar radiation, 370
SPARROW, regression model with,
362-364
Spatial fuzzy ARTMAP, 155
Spatially Distributed Direct Hydrograph
(SDDH) method, 381
Speckle reduction, 194
Spectral angle mapper, 168-169
Spectrally consistent classification
units, 7
Spectral mixture analysis, 4, 61, 94
fraction images of, 103-104
mathematical model, 62
modeling approach, 113
Spectral reflectance characteristics, 96
Spline interpretation methods, 263264
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SPLIT model, 79-80
ISA presentation in TM pixels, 81
results of, 87-90
Splitting—merging algorithm, 254
SPOT pan images, spatial resolution of,
332; see also Landsat TM images
SPOT sensor, 152
Square root of PD (SPD), 418, 420
at block, BG, and tract levels, 423
estimated and reference, scatter plots
of, 423
Standard back-propagation, 81
Stanford Research Institute, 274
STARIMAGER-200, 287
St. Cloud and Rochester for 1990 and
2000 and change maps, 15
Steger line extraction algorithm, 195
Steger’s differential geometric
approach, 193
Storm water management model, 354,
375
Storm water runoff, 355
nutrient and sediment loading of, 359
Straight asphalt lines, 182
Stream health index, 362-363
Stream impairment, 359-360
Stream quality classification system, 397
Structure index (SI), 238
Subpixel classification, 4, 59
Subpixel imperviousness assessment
model, 41
Subpixel impervious surfaces, 52
Surface reconstruction algorithm, 224
Surface runoff, 353
and impervious surface area, 356-359
and land use, 356
SWAT, see Soil and water assessment
tool
SWIR hydrocarbon absorption,
240-241
SWMM, see Storm water management
model
SWRRB, see Simulator for water
resources in rural basins
Synthetic aperture radar, 143-144
data of, 144-145
image model, 299-301
and optical data, 146
urban remote sensing, 144
Synthetic image texture, 285
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Synthetic variable ratio (SVR) image
fusion method, 333
Systematic error (SE), 50

T
TauDEM, 393
Template-based methods, 192
Terrain single scattering, 317
Terrainview (Viewtec), 285
Terrestrial habitats, 404
Texture analysis filtering, 336-338
Texture mapping,
visualization/simulation and,
285-286
Thermal infrared band, 61
3D building model, from LiDAR data
and digital aerial images, 251
datasets, 259-261
DBM and DTM, creation of, 258-259
building and LiDAR data,
relationship between, 256-257
interpolation algorithm via planar
equation, 258
edge detection, 252-256
experimental outcomes for, 261-264
polygon extraction, 256
3D city models
aerial laser scans and, 273
generation, linear array CCD aerial
cameras and, 286
application software development,
287-288
test projects, 290-293
with TLS/SI-200 images and
CC-Modeler, 288-290
maps digitization, 273
photogrammetric generation,
273-275
3D spatial information system, 284
Three-Line-Scanner system, 286
TIN, see Triangulated irregular network
TLS/SI200 system
and CC-Modeler, 3D city modeling
with, 288-290
sensor parameter, 287
TLS system, see Three-Line-Scanner
system
TMDL, see Total maximum daily load
Tobler’s Law, 122
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Topological dimension, see Euclidean
dimension
Topology adjustment, 281-282; see also
CC-Modeler
Total maximum daily load, 4
Township in Ozaukee County,
Wisconsin, United States
IKONOS image of, 25
study area, 24
Transportation infrastructure planning
and management, 163, 166
Tree-covered areas, 14
Triangular prism surface area (TPSA)
method, 125
Triangulated irregular network
data structure, 252, 254
structure, 275
Trimble MS750, 287
Triple return contributions
ground-wall-ground return, 316
wall-ground-wall return from,
314-316
Triple-scattering phenomena, 302, 303
TUM-LOREX road model, 185-186
system architecture of, 186
2D raster data, 285
Two-endmember linear spectral mixture

model, 100

U

Ultra-high-resolution satellite imagers,
city modeling and, 273

Uniform theory of diffraction, 305
United Nations Population Division
report, 21
Universal Transverse Mercator (UTM)
coordinate and projection system,
6,414
projection of, 44
Urban environments, 123, 143
Urban flooding, 353
Urban heat island effect, 124
Urban land use density and percent
imperviousness, 51-54
Urban runoff, pollutant loadings in, 372
Urban scene images, 121
U.S. Department of Agriculture
(USDA), 371
U.S. Department of Transportation, 164
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U.S. Geological Survey (USGS), 41
UTD, see Uniform theory of diffraction

Vv

Variograms, 122, 126

Vegetation impervious surface-soil (VIS)
model, 22

Vegetation phenology, 7

Virginia Department of Transportation
(VDOT), 259

Visible and near-infrared (VNIR), 238,
240-241

Visualization/simulation, texture
mapping and, 285-286

\%%
Walking-divider method, 124
Wall-ground double scattering, 317-319,
323-324
Wall-ground reflections, 311
Wall-ground-wall triple scattering,
320-321, 325-326
Water abundance, best management
plans (BMP) for, 354
Water Erosion Prediction Project
(WEPP), 374
Water pollution, best management plans
(BMP) for, 354
Water quality, ISA and, 359
Watershed
delineation, 393
digital elevation model (DEM) of, 393
in health, 403
land-cover effects, 402
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FIGURE 1.8

Impervious classifications of St. Cloud and Rochester for 1990 and 2000 and change maps.
(From Bauer, M., Loeffelholz, B., and Wilson, B., Proceedings, Pecora 16 Conference, American
Society of Photogrammetry and Remote Sensing, October 23-27, 2005, Sioux Falls, South Dakota,
2005. With permission.)
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FIGURE 2.3
Artificial neural network structure.
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FIGURE 3.3
Impervious surfaces in 1986 and 2002 in Seattle, 1984 and 2002 in Las Vegas.
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FIGURE 5.5

An example of true-color digital orthophoto data with 1 m spatial resolution for the East
Greenwich, Rhode Island (a, b) and the ISA extracted by MASC modeling (c).



0.9
0.8
0.7
0.6
N
0.5
0.4
Legend
0-20%
0.3 20%—-40%
40%-60%
60%—-80%
0.2 80%—100%
051 2 3 4 .
0.1 Miles
0

FIGURE 6.3
Impervious surface image derived from ALI image. The color figure to the right shows the
distribution of impervious surface at four categories.
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FIGURE 6.4
Impervious surface image derived from Hyperion image. The color figure to the right shows the
distribution of impervious surface at four categories.
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FIGURE 8.3
Classification maps for SAR data classification of human settlements in the area around the

town of Al Fashir (Sudan). Three land-use classes are used: informal settlements (light green),
formals settlements (red), rocks and bare soil (yellow). (a) Original SAR data with the tent camp
highlighted by a green circle; (b) map from classification of SAR textures; (c) map from joint
classification of SAR and SPOT textures.
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FIGURE 8.6
Classification maps of the three SAR available images obtained with ARTMAP (a) and with

the MRF approach (b); the land-cover ground truth used to evaluate classification results
(c); classification maps of the joint classification of the LANDSAT image of 21 June and the
three SAR images with ARTMAP (d); and MREF (e); classification map of the three SAR available
images obtained with spatial ARTMAP (f).
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FIGURE 9.2

Comparison of classifications.

FIGURE 11.11
Final result after the extraction of intersections.



FIGURE 16.1
Medium-resolution satellite images for roof mapping (300 X 180 pixel section, 10 m pixel).
(a) SPOT Pan image; (b) TM bands 3, 4, and 7 in blue, green, and red; and (c) fused TM-SPOT

image.



FIGURE 16.6
QuickBird multispectral image of suburban scene in Oromocto (subset, 2.8 m resolution).



FIGURE 16.8
Pan-sharpened QuickBird image of the suburban scene produced from Figure 16.6 and the
corresponding QuickBird Pan image (subset, 0.7 m resolution).
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FIGURE 17.5
Satellite-derived (Landsat) analysis of ISA for the Conestoga Watershed in eastern Pennsylva-
nia for the year 2000. Arrow denotes the town of Lancaster referred to in Figure 17.6.

FIGURE 17.6
Photograph of the Conestoga River in the town of Lancaster, Pennsylvania (arrow in Figure
17.5) taken in the year 2004 near the location denoted by arrow in Figure 17.5.



1979 1987

ISA

0.00
0.11
0.22
0.30
0.43
0.54
0.64
0.75
0.86
0.96

Scale

Kilometers
5

UTM, zonel6

1997

FIGURE 19.5

ISA (0-1 representing 0%-100%) maps for the entire Peachtree Watershed for the years 1979,
1987, and 1997. Color-coding represents the degree of ecological impact, as outlined by Schueler
(1994). Overlaid in blue is the digital hydrography of the Peachtree watershed. (From Gillies,
RR. et al,, Remote Sensing Environ., 86, 441, 2003. Copyright 2003. With permission from
Elsevier.)






